2 Intrusion Detection Systems

1 http://www.asecuritysite.com/security/information/chapter02

2.1 Objectives

The key objectives of this unit are to:

e Provide an overview of the requirement for Intrusion Detection Systems (IDSs),
and where they are used.

e Define a practical implementation of IDS using Snort.

e OQutline some typical detection procedures, such as for ping sweeps.

2.2 Introduction

In Chapter 1 the concept of defence-in-depth was discussed, where a defence system
has many layers of defence (Figure 2.1). Unfortunately, as in military systems, it is
not always possible to protect using front-line defences, even if there are multiple
layers of them, against breaches in security (Figure 2.2). This can be because an in-
truder has found a weakness within the security barriers, or because the intruder has
actually managed to physically locate themselves within the trusted areas. Thus all
the gateway firewalls and DMZ'’s cannot protect against an intruder once they have
managed to base themselves physically or locally within a network. Along with this,
most security systems can only guard against known types of attacks, such as in de-
tecting known viruses. A particular problem is when new types of attacks occur, as
these are more difficult to defend against. Thus a key factor is identifying threats, and
how to mitigate against them. Many organisations are now rehearsing plans on how
to cope with these threats, and have contingency plans. Unfortunately many other
organisations have no plans for given threats, and these are the ones that are in most
danger of a damaging attack.

As in military systems, an allied force would setup spies whose task it is to detect
intrusions, and any covert activities. Figure 2.3 illustrates this concept, where intru-
sion detection agents are used to listen to network traffic, and network/user activity
to try and detect any breaches in security.

W.Buchanan 1

O
e U9,

s
g
.

L 1L T

Hello. How are 4
@ you? Is this [
okay?
|
— =]

@ 4
E
defences, intruders i

can penetrate them

Figure 2.1 Network security

Enemy takes some time to breach each of the levels of defence

|

|

I

|

|

|

|

|

|
I
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|

=4

Second-level First-level
defence defence

Forth-level Third-level
defence defence

Figure 2.2 Network security

Intrusion Detection Systems can help to reduce breaches

Intrusion
Detection Intrusion
Detection

® | B

First-level

Forth-level Third-level Second-level
defence defence defence

Figure 2.3 Intrusion detection

defence

Most users think that the major threat for organisational security is that of the exter-
nal intruder, such as the ‘script kiddie” who typically works from home with a
remote connection and who wants to do damage to the system for the glory of it.
Unfortunately, this is only one part of security, as there are many other threats, from
both from inside and outside the network. Thus gateway bastions, such as perimeter
routers, can never been seen as an effective method of stopping network intrusions.
Figure 2.4 outlines some of the threats which exist, from both inside and outside the
network. These include: data stealing; personal abuse; worms/viruses; DDoS (Dis-
tributed Denial-of-Service); fraud; and terrorism. It is thus important that intrusion
detection and logging agents are placed around the network, and on hosts, in order
that an intrusion can be detected, or, at least, the information on the intrusion is
gained for future defences (Figure 2.5).

W.Buchanan 3

CSI (Computer Security Institute) found:
e 70% of organisation had breaches

e 60% of all breaches came from inside their
own systems

Data

Corporate access —— stealing

—_—
External
hack
DoS (Denial-of-
g - - sevice)
’ R
Personal

Gateway
(cannot deal with
internal threats)

abuse

Systems

Assets -
1

Network/ / e)
Organisational Fraud

perimeter

&

Worms/viruses

o)
é

Figure 2.4 Network threats

Eve
(Intruder)

Public Web Public FTP Public Proxy
e~ Server Server Server

Audit/
logging

Intrusion Detection

Intrusion System
Detection

$

Intrusion Detection
System

Defence-in-depth puts as many
obstacles in the way of an

intruder, so that it becomes Intrusion Detection
harder to penetrate the network, System

and easier to detect % ‘

Figure 2.5 Intrusion detection agents

2.3 Types of intrusion

There are two main types of intrusion detection:

e Misuse (Signature-based) Detection. This type of IDS attempts to model threats
with specific well-defined patterns, and then scans for occurrences of these. Typi-

cal types of misuse detection includes: the propagation of well-known viruses;
and worm propagation. Its main disadvantage is that it struggles to detect new
attacks, as these are likely to have signatures which do not match current attacks.
This method is also good at detecting script-based attacks, such as using NMAP
to scan the hosts on a network, as the scripts tend to have a fairly well defined
operation.

Anomaly Detection. This type of IDS assumes that abnormal behaviour by a us-
er/device can be correlated with an intrusion. Its advantage is that it can typically
react to new attacks, but can often struggle to detect variants of known threats,
particularly if they fit into the normal usage pattern of a user. Another problem is
that they can be overcome if they the intruder mimics the normal behavioural
pattern of users/devices. This type of detection is good for human-type threats,
such as with fraud, where an anomaly detector can pick-up changes in user be-
haviour, which is often a sign of potential fraud. Typically anomoly
classifications relate to user anomolies (such as a change in user behaviour), host
anomolies (such as a change in machine operation, such as increased CPU usage,
and an increased number of system processes) and network anomolies (such as a
change in network traffic, such as an increase in FTP traffic).

The main types of intrusion detection systems are:

Network intrusion detection systems (NIDS). These monitor data packets on the
network and try to determine an intrusion based on network traffic. They can ei-
ther be host-based, where it runs on a host, or network-based, where they can
listen to network traffic using a hub, router or probe. Snort is a good example of
a NIDS, and is freely available for most operating systems.

System integrity verifiers (SIV). These monitor system files to determine if an
intruder has changed them, such as with a backdoor attack. A good example of
this is Tripwire. They can also watch other key system components, such as the
Windows registry and for root/administrator level privileges.

Log file monitors (LFM). These monitor log files which are generated by applica-
tion servers and networked services, and look for key patterns of change. Swatch
is a good example of an LFM.

User profiling. This involves monitoring user behaviour, where the system
checks for normal user behaviour against the current user behaviour. Any anom-
alies, or differences from the norm, could point to an intrusion.

Honey pots. This is where an administrator places a host on the network which is
prone to attack, such as: having weak or dummy passwords; an unpatched oper-
ating system; or have TCP server ports open for connection. The honey pot is
thus used to attract an intruder, and detect the intrusion at any early stage. Some
advanced honey pots try and mimic the required responses of an attacked host,
but not actually implement the attack.

2.4 Attack patterns

It is important to know the main stages of an intrusion, so that they can be detected

at an early phase, and to overcome them before they can do any damage. Basically an

W.Buchanan 5

intrusion typically goes through alert phases from yellow, which shows some signs
of a potential threat, to red, which involves the potential stealing of data or some
form of abuse. The main phases are defined in Figure 2.6.

Often it takes some time for an intruder to profit from their activities, and it is im-
portant to put in as many obstacles as possible to slow down their activity. The
slower the intrusion, the more chance there is in detecting the activates, and thus in
thwarting them. Figure 2.6 shows a typical sequence of intrusion, which goes from a
yellow alert (on the outside reconnaissance) to a red alert (for the profit phase).

Intruder gains public information Intruder gains more specific
about the systems, such as DNS and information such as subnet layout, and
IP information networked devices.

Outside
reconnaissance

Inside
reconnaissance

Intrusion Intrusion
Detection Detection

$
****** 3
(Intruder) ~ - X
e N
i 2 From code yellow to code \ Exploit
L red ... !
o P <
“«——————— — — — — — — — — — — - >
X]
<X Intruder finds a
weakness, such as
cracking a password,
breaching
a firewall, and so on.
Profit Foothold
= 54
Data stealing, system » Once into the system, the »
damage, intruder can then advance

user abuse, and so on. up the privilege levels,

Figure 2.6 Intrusion pattern

Initially an intruder might gain information from outside the network, such as de-
termining network addresses, or domain names. There are, unfortunately, many
databases which contain this type of information, as the Internet is a global network,
and organisations must register their systems for network addresses and domain
names. Once gained, the intruder could move into an internal reconnaissance phase,
where more specific information could be gained, such as determining the location of
firewalls, subnetworks, network layouts, host/server locations, and so on. It is thus
important that this type of activity is detected, as it is typically a sign of some form of
future intrusion. Key features could be things such as:

e A scan of network addresses for a range of hosts on a given subnetwork (ping
sweep).
e A scan of open TCP ports for a range of hosts on a given subnetwork (port scan).

e A scan of a specific TCP port for a range of hosts on a given subnetwork (port
sweep).

e Aninterrogation of the configuration of network devices.

e Accessing systems configuration files, such as ones which contain user names
and passwords.

Once the intruder has managed to gain information from the internal network, they
may then use this information to gain a foothold, from which they can exploit. Ex-
ample of this may be:

e Hijacking a user ID which has a default password (such as for the password of
default or password), and then using this to move up the levels of privilege on a
system. Often the administrator has the highest privileges on the system, but is
normally secured with a strong password. An intruder, though, who gains a
foothold on the system, normally through a lower-level account, could then
gleam more information, and move up through the privilege hierarchy.

e Using software flaws to exploit weaknesses, and gain a higher-level privilege to
the system. Software flaws can be intentional, where the writer has created an
exploit which can be used to cause damage. This might include a back-door ex-
ploit, where an intruder could connect into a host through some form of network
connection, or though a virus or worm. A non-intentional one is where the soft-
ware has some form of flaw which was unintentional, but which can be used by
an intruder. Typical types of non-intentional flaws are: validation flaws (where
the program does not check for correct input data); domain flaws (where data
can leak from one program to another); identification flaws (where the program
does not properly identify the requester); and logical problems (where the pro-
gram does not operate correctly with certain logical steps).

On problem with IDS system is that they cannot investigate encrypted content,
which is setup through an encryption tunnel. These tunnels are often used to keep
data private when using public networks. It is thus important that the usage of en-
cryption tunnels on corporate network should be carefully used, as threats within
them may not be picked-up, and virus/worm scanners and IDS systems will not be
able to decrypt the traffic.

2.5 Host/network-based intrusion detection

An intrusion detection system (IDS) can be placed within the network to monitor
network traffic, such as looking for known attacks or virus signatures, or can be
placed on hosts, where they can detect an actual host intrusion (Figure 2.7). Unfortu-
nately a network-based intrusion detection system cannot obviously decrypt
encrypted network data packets, such as with an encryption tunnel (such as such an
IPSec connection), thus, in a highly secure network, it is important to run intrusion
detection systems on hosts. With encrypted data threats could be hidden from the
IDS, as they can be overcome by intruders who know their operation. This is one of
the reasons that many organisations do not use IPSec within their systems, and only
use it to connect to the perimeter of the network. Some organisations even have net-

W.Buchanan 7

work sensors on the network which detect the possible presence of remote connec-
tions, and, where possible, the detection of encryption tunnels.

Overall an IDS, just as a firewall, can either be stateful or stateless. With stateless,
the IDS does not have to remember any proceeding data packets, and the state that a
connection is in. This will thus have very little overhead as the IDS can discard the
packet after it is finished with them. With a stateful IDS, the IDS remembers the pre-
vious data packets, and the state of the current connection. This, thus, requires a
great deal of memory and buffering, but will be able to understand stateful attacks,
and attacks which span over several data packets. For example, if virus was con-
tained with an email, and the email was split into data frames for 1500 bytes, the
virus could end up spanning across two data frame, and thus the IDS looking at each
data frame at a time would not detect the virus. A stateful IDS, though, can crash if
an intruder sends a sequence of data packets into the network, but misses one out, so
that the IDS buffers all the other ones, waiting for the missing one, but overruns its
buffer size, and crashes.

Public Web Public FTP Public Proxy
Server Server Server

Audit/
logging
Intrusion Detection
System
Intrusion
9 A Intrusion Detection
System

NAT Device

Network-based
IDS listens to Intrusion Detection
some/all System

network traffic

Intrusion Detectiol
System

Host-based IDS
listens to traffic
in/out of a host

—

Figure 2.7 Intrusion pattern

There are, though, several ways that an IDS can be tricked in its detection. One is
with the creation of a denial-of-service against the IDS, where the network traffic is
too great for it to cope with. Another is to stagger the threat over several data packets
the IDS must be able to backtrack for connections, and buffer each of the received
packets. This obviously has a great effect on its performance, and the more it checks,
and backtracks, the slower it is likely to become. As a default, the host-based IDS can

be seen as the last line of defence, where a threat has been able to transverse over the
network, and end-up at the host, without being stopped (Figure 2.8).

Intrusion Detection
System

./

Figure 2.8 IDS

2.6 Placement of the IDS

As an extension of this, the IDSs’ can be placed on the servers within the DMZ, and
on trusted servers (as illustrated in Figure 2.9). It is also important to place IDS
agents on either side of a firewall, as an agent placed on the trusted side of a firewall
may not be able to detect an attack which has been blocked, thus agents on either
side will detect attacks which have been blocked, and also any that have been al-
lowed to transverse through the firewall. An IDS agent on the untrusted side of the
perimeter will thus detect an attack, on the main firewall.

The placement of the IDS on certain devices is important. If it is placed on a hub it
can listen to all of the traffic that is on the hub (Figue 2.10). If it is placed on a net-
work switch, it cannot listen to any of the traffic, unless it is configured to forward
traffic to a monitoring port. One type of system which can capture data packets from
the network is Cisco’s SPAN (Switched Port Analyser), which monitors traffic enter-
ing the switch (ingress traffic), and traffic leaving the switch (egress traffic). An
example of SPAN is shown in Figure 2.11 where the first switch port (FA0/1) moni-
tors FAO/2 and FAOQ/5, along with the whole of VLAN2. Thus the switch can monitor
individual ports, or complete VLANS.

W.Buchanan 9

Tntrusion
Dotection

This IDS detects
successful attacks
against firewall

IDS detects
attacks against
server
$

This IDS detects
attacks against
main firewall

s IDS detects internal
3 attacks

IDS can listen to
all the incoming
and outgoing network

This IDS cannot hear any
traffic which is not addressed to it
as it connects to a switch.

interface FastEthernet0/1
port monitor FastEthernet0/2
port monitor FastEthernet0/5
port monitor VLAN2

nterface FastEthernet0/2

interface FastEthernet0/3
switchport access vlan 2

interface FastEthernet0/4
switchport access vlan 2

nterface FastEthernet0/5

interface VLAN1
ip address 192.168.0.1 255.255.255.0
no ip directed-broadcast

no ip route-cache
1

Figure 2.11 SPAN detection

2.7 SNORT

10

The key foundation of most types of data packet detection is in the usage of libpcap
(for Unix-based systems) and for Windows-based systems with the WinPcap librar-
ies (which have been used in the software tutorials in Chapter 1). Many tools build
on these including Snort [1], tcptrace (to identity TCP sessions), tcpflow (to recon-
struct TCP sessions) and Ethereal/Wireshark (to capture network traffic). Snort is one
of the most widely-used IDS’s, and can detect both signature- and anomaly-based
detection. In order not to burden the main processes on a machine, often Snort runs
as a background process and initially reads-in a set of rules (filename.rules) and moni-
tors the network traffic to produce event data and a log (Figure 2.12).

Other tools:

Tceptrace. Identity TCP streams.
Tcpflow. Reconstruct TCP streams.

AN
—_ —_— =
yj q Event data
Q _[\:5
| SN —
SNORT rules ‘ SO Gt ‘ Log data
file

=
@ @

Signature detection. Anomaly detection.

Identify well-known Statistical anomalies,

patterns of attack. such as user logins,
changes to files, and so
on.

Figure 2.12 Snort

The basic format of a Snort rule header is:

[ACTION] [PROTOCOL] [ADDRESS] [PORT] [DIRECTION] [ADDRESS] [PORT]
kN ARG | -V -y - - »
N ~- -- - - eeemTTTE -

/ -- --

1 1 , /

\\ I

“1-alert tcp any any S 192.168.1.0/24 111
(content:""]00 01 86 a5|'; msg:"mountd access'; sid:999)

where the first word on the rule is the action, such as:

alert Generate an alert and log packet
log Log packet
pass Ignore the packet

activate Alertand activate another rule
dynamic Remain idle until activated by an activate rule

The second part of the rule defines the protocol, such as:

W.Buchanan 11

tcp udp
icmp ip

where TCP and UDP are transport layer protocols, while ICMP and IP are Internet
(/network) layer protocols. The next few fields define the source and destination of
the traffic, as illustrated in Figure 2.13. The source and destination address can be
defined as any or with an IP address and a subnet mask. For example 192.168.1.0/24
includes a range of addresses from 192.168.1.0 to 192.168.1.255. Along with this, the
TCP/UDP port(s) can be defined as either: any; a range of ports (m:n which is port m
to port n); or a specified port. It should be remembered that when a client connects to
a server, the client uses its own source port, and it connects, typically, to a well-
known port on the server. For example, a client which connects to a Web server,
would connect to a destination port of 80, and with a unique source port, such as
port 1111. In this case, when the data packets leave the client, the destination port
will be 80, and the source port will be 1111. When the data returns from the server, it
will have a source port of 80 and a destination one of 1111. It is thus key that the ->is
pointing in the correct direction, otherwise the <> can be used for both directions.

‘ alert tcp any any -> 192.168.1.0/24 111 (content:"]00 01 86 a5|'"; msg:"mountd access';) ‘

Source IP Destination IP
Source port Destination port
(any, (any,

or m:nformton) orm:nformton)
Figure 2.13 Example of source and destination addresses in a Snort rule

Some rules allow a payload in the data packet to be detected. An example of this is
given in Figure 2.14. For this the content element is used to detect a certain sequence
in the data packet. This can be defined either in hexadecimal format (between | and
l) or in a plaintext format. Along with this the content element can have several
modifiers, such as offset, distance and within which modify the operation of the search.
The end part of the rule in Figure 2.14 displays a message if the rule has been activat-
ed. There are also various configuration commands that can be used in the rules file,
such as:

- config decode_arp (snort —a)

- config payload

- config decode_data_link

- config interface

- config nolog - disable logging, but alerts still occur
- config quiet (snort —q)

- config verbose (snort —v)

12

- config show_year
- config min_ttl:x

‘ alert tcp any any -> 192.168.1.0/24 111 (content:"]00 01 86 a5|'"; msg:"mountd access™;)
|

Payload detection:
Hex sequence "]00 01 86 a5]|"
Text sequence "USER root"

> Modifiers:
rawbytes
offset
distance
within
uricontent
bytejump

Figure 2.14 Example Snort rule

The SID and REV options are used to give each threat a unique ID, and range from:
- Less 100 Reserved for future use.

- Between 100 and 1,000,000 are rules included with the Snort distribution.

- More than 1,000,000 is for local rules.

For example: sid:336; rev:7; represents an attempt to change to the system adminis-
trator’s account in FTP.

2.8 Example rules

There are two main variables which are typically defined in the rules files. These are:
$HOME_NET which defines all the nodes on our own network; and $EXTER-
NAL_NET which is every network outside our own network. In the following script
the alert is generated when there is a flow of traffic from the external network, on
any port, to our own network on port 21 (the FIP port). It then detects that the exter-
nal intruder is trying to change the current directory to the root’s home directory
(using the CWD ~root command):

alert tcp $EXTERNAL NET any -> $HOME_NET 21
(msg:""FTP CWD ~root attempt'; flow:to_server,established;
content:"CWD"; nocase; content:"~root"; nocase;
distance:1; sid:999)

where nocase defines that the case of the word is ignored, thus “CWD”, and “cwd”
would both be detected. The following rule detects incoming traffic which is des-

W.Buchanan 13

tined for an FTP server on our own network which tries to get the password file (us-
ing the RETR passwd FTP command):

alert tcp $EXTERNAL_NET any -> $HOME_NET 21
(msg:"FTP passwd retrieval attempt; flow:to_ server,established;
content:"RETR"; nocase; content:'passwd"; sid:999)

2.8.1 P2P detection

Peer-to-peer (P2P) operations are to be avoided in many organisations, as the laws
against them are still being developed. One of the most popular P2P is Kazaa which
uses port 1214 to allow a remote peer connection, such as:

> netstat -a
Active Connections

Proto Local Address Foreign Address State

TCP bills:http bills:0 LISTENING

TCP bills:epmap bills:0 LISTENING

TCP bills:https bills:0 LISTENING

TCP bills:microsoft-ds bills:0 LISTENING

TCP bills:1025 bills:0 LISTENING Peer-to-peer pro-
TCP bills:1214 bills:0 LISTENING <«— gram is listening on
TCP bills:2869 bills:0 LISTENING

TCP bills:3620 bills:0 LISTENING port 1214

TCP bills:5679 bills:0 LISTENING

TCP bills:1029 bills:0 LISTENING T

Thus to detect Kazaa activities for a GET message:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1214
(msg:""P2P (kazaa/morpheus) GET request'';
flow:to_server,established; content:"GET '; sid:999)

2.8.2 MSN Messenger

To detect MSN Messenger, which uses port 1863 for its communications, the MSG
command is detected in the data packet payload:

alert tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg:''CHAT MSN
message''; flow:established; content:"MSG **; sid:999)

2.8.3 Virus/Worm detection

For a virus or worm, normally the signature of its propagation is detected, such as:

alert tcp any any -> any 139 (msg:"Virus - Possible QAZ Worm";
flags:A; content: "|71 61 7a 77 73 78 2e 68 73 71|"; sid:999)

which detects the worm propagating through port 139, and detects the A flag in the
TCP header (A — acknowledge), with a hex pattern of 71 ... 71. For a virus, Snort can
detect its propagation to an email server (on port 25 - SMTP), such as with a certain
file attachment (in this case with a .VBS file attachment):

14

alert tcp $SMTP_SERVERS any -> $EXTERNAL_NET 25
(msg:""VIRUS OUTBOUND .vbs file attachment™;
flow:to_server,established; content:"Content-Disposition|3al]';
content:"filename=]22|"; distance:0; within:30;
content:".vbs|22|"; distance:0; within:30; nocase; sid:999)

This detects the name of the file as “filename.vbs”, where the quotes (“) identifies the

",y

ASCII character equivalent of 22 in hexadecimal ([2]), and 3a represents a “:”.

2.8.4 Sweeps

One activity which typically indicates a potential future security breach is sweeping
activities. This typically involves: TCP/UDP sweeps (as illustrated in Figure 2.15);
ping sweeps (as illustrated in Figure 2.16), OS identification, and account scans (Fig-
ure 2.17).

PORT SCANS. For port sweeps an intruder may scan certain hosts or every host on a
subnet, to determine the ports which they have open, as certain ports could be used
to gain a foothold on the host. Programs such as nmap [3] for example can scan
whole networks looking for open ports. A key objective of Snort is to detect this type
of activity. Luckily Snort has a pre-processor rule for this, which acts before other
rules. An example is:

sfportscan: proto { all } memcap { 10000000 } sense level { low }

where the arguments might include:

e proto. This can be tcp, udp, icmp, ip or all, and are the types of protocol scans to
be detected.

e scan_type. This can be portscan, portsweep, decoy_portscan, distribut-
ed_portscan or all, and defines the scan type to be detected.

e sense_level. This can be low, medium or high, and defines the sensitity of the
portscans. A low sense level detects response errors, such as ICMP unreachables.
Medium sensitivity level detects portscans and filtered portscans (which are
portscans that do not have any responses). High sensitivity level has a lower
threshold than medium and has a longer time window to detect sweeps.

e Memcap. This defines the maximum memory size (in bytes) — this limits the pos-
sibility of buffer overflows.

e Watch_Ip. This defines the hosts that are to be detected.

To save to a file named portscan.log (scan.rule):

preprocessor flow: stats interval 0 hash 2
preprocessor sfportscan: proto { all } scan_type { all }
sense_level { low } logfile { portscan.log }

W.Buchanan 15

It is always important to understand the ports that are open on a computer, such as
with running NMAP:

C:\> snort -c scan.rule -dev -i 3 -p -1 c:\\bill K ascii
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file scan.rule
——————————— [Flow Config]--——---------"-""----——

| Stats Interval: O

| Hash Method: 2

| Memcap: 10485760
| Rows : 4096

|

Overhead Bytes: 16388(%0.16)
Portscan Detection Config:

Detect Protocols: TCP UDP ICMP IP
Detect Scan Type: portscan portsweep decoy_portscan distributed_portscan
Sensitivity Level: Low
Memcap (in bytes): 1048576
Number of Nodes: 3869
Logfile: c:\\bill/portscan.log

Tagged Packet Limit: 256

Then for a scan:

C:\> nmap -0 -A 192.168.0.1

Starting Nmap 4.20 (http://insecure.org) at 2007-01-09 21:58 GMT Standard Time
Interesting ports on 192.168.0.1:

Not shown: 1695 closed ports

PORT STATE SERVICE

80/tcp open http

8888/tcp open sun-answerbook

MAC Address: 00:0B:44:F5:33:D5 (The Linksys Group)

Nmap Ffinished: 1 IP address (1 host up) scanned in 1.500 seconds

The resulting log then gives the trace of the port sweep and scan:

Time: 08/17-14:41:54.495296

event_ref: 0O

192.168.0.3 -> 63.13.134.49 (portscan) TCP Portsweep
Priority Count: 5

Connection Count: 135

IP Count: 43

Scanned IP Range: 63.13.134.49:216.239.59.99
Port/Proto Count: 1

Port/Proto Range: 80:80

Time: 08/17-14:42:52.431092

event_ref: 0

192.168.0.3 -> 192.168.0.1 (portscan) TCP Portsweep
Priority Count: 5

Connection Count: 10

IP Count: 5

Scanned IP Range: 66.249.93.165:192.168.0.7
Port/Proto Count: 3

Port/Proto Range: 80:2869

Time: 08/17-14:42:52.434852

event_ref: 0

192.168.0.3 -> 192.168.0.1 (portscan) TCP Portscan
Priority Count: 5

Connection Count: 9

IP Count: 1

Scanner IP Range: 192.168.0.3:192.168.0.3
Port/Proto Count: 10

Port/Proto Range: 21:636

16

PING SCANS. With ping scans, the intruder tries to determine the hosts which are ac-
tive on a network. An example of detecting a Window’s ping sweep is:

alert icmp $EXTERNAL NET any -> $HOME NET any (
msg:"ICMP PING Windows™; itype:8; content:"abcdefghijklmnop';
depth:16; sid:999)

where an ICMP ping packet is detected with the standard contents of “abc....op”. An
example of the contents of a ping request is:

0000 00 Oc 41 f5 23 d5 00 15 00 34 02 fO 08 00 45 00 W A R
0010 00 3c 10 7c 00 00 80 01 a6 8F cO a8 01 64 cO a8 B d..
0020 01 01 08 00 60 55 04 00 €9 06 61 62 63 64 65 66 -... U.. __abcdef
0030 67 68 69 6a 6b 6C 6d 6 6F 70 71 72 73 74 75 76 ghijklmn opqrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

And a ping reply:

0000 00 15 00 34 02 fO 00 Oc 41 f5 23 d5 08 00 45 00 .4l .. AHLLE.
0010 00 3c 10 7c 00 00 96 01 90 8Ff cO a8 01 01 cO a8 B
0020 01 64 00 00 68 55 04 OO0 €9 06 61 62 63 64 65 66 .d._hU.. ..abcdef
0030 67 68 69 6a 6b 6€ 6d 6 6F 70 71 72 73 74 75 76 ghijklmn opgrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

Os ScANS. For OS identification the intruder searches hosts for certain machines,
which possibly have an OS weakness, such as searching for Windows 95 machines,
as these tend to have FAT32 file systems which have very little security associated
with them. For account scans, an intruder may scan the user ID’s for weak pass-
words. where the tests are:

e TSeq. This is where SYN packets are sent, and the TCP sequence numbers are
analysed.

e T1. This is a SYN packet with certain options (WNMTE) set is sent to an open
TCP port.

e T2. This is a NULL packet with options (WNMTE) and is sent to an open TCP
port.

e T3. This is a SYN,FIN,PSH,URG packet with options (WNMTE), and sent to an
open TCP port.

e T4. This is an ACK packet with options (WNMTE) and is sent to an open TCP
port.

e T5. This is a SYN packet with options (WNMTE) and is sent to a closed TCP port.

e T6. This is an ACK packet with options (WNMTE) and is sent to a closed TCP
port.

e T7. This is a FIN,PSH,URG packet with options (WNMTE) and is sent to a closed
TCP port.

e PU. This is a packet sent to a closed UDP port.

For example the following is a fingerprint from XP Professional:

TSeq(Class=RI1%gcd=<8%S1=<2959A&>356%1PI1D=1)

W.Buchanan 17

T1(DF=Y%W=FAFO | 402E%ACK=S++%F lags=AS%0ps=MNWNNT)

T2(Resp=N)

T3(Resp=N)

T4 (DF=N%W=0%ACK=0%F lags=R%0ps=)

T5(DF=N%W=0%ACK=S++%F lags=AR%0ps=)

T6 (DF=N%W=0%ACK=0%F lags=R%0ps=)

T7(Resp=N)
PU(DF=N%TOS=0%IPLEN=38%RIPTL=148%R I D=E%R I PCK=E%UCK=E%ULEN=134%DAT=E)

where:

e Resp: defines whether the host responds. Y - for a response, and N - no response.

e DF: defines whether the host responds with a “Don’t Fragment” bit set in re-
sponse. Y - DF was set, N - DF was not set.

e W: defines the acknowledgement sequence number response and is the Window
advertisement size sent by the host. ACK 0 - ack zero, S - ack sequence number,
S++ - ack sequence number + 1.

e Flags: this defines the flags set in response. S = SYN, A = ACK, R =RST, F = FIN,
U =URG, P =PSH.

e Ops: this is the options set for the response. M - MSS, E - Echoed MSS, W - Win-
dow Scale, T - Timestamp, and N - No Option.

ForexanqﬂeDF=Y%W=FAFO|402E%ACK=S++%F|ags=AS%Ops=MNWNNT
defines that the “Don’t Fragment” bit is set, the Window size is set to FAF0 or 402E,

the acknowledgement sequence number is set to one more than the requesting pack-
et, the flags set to ACK/SYN, with Options of MNWNNT.

Typical scans:

|
\
\
N\
N
AN

~
~

A particular threat

is the TCP/UDP port
scanner, which scans for open
ports on a host.

If an intruder finds one, it may try
and connect to it.

Open port 88887

~

Open port 10? Ping sweeps.
Open port 117 TCP scans.
UDP scans.

OS identification scans.
Account scans.

An open port is in the LISTEN
state.

C:\log>netstat -a
Active Connections

Proto Local Address Foreign Address State

TCP bills:epmap bills:0 LISTENING
TCP bills:microsoft-ds bills:0 LISTENING
TCP bills:1035 bills:0 LISTENING
TCP bills:3389 bills:0 LISTENING

18

Figure 2.15 TCP/UDP port sweeps

Ping 192.168.0.1?
Ping 192.168.0.1?

Ping 192.168.0.253?
Ping 192.168.0.254?

scanner, which pings multiple
hosts to see which ones are alive

If an intruder finds one, they may
try and connect to it.

N <si
AN
N\ N
A particular threat X4 A @
is the ping port S~ - A %

Typical scans:

Ping sweeps.

TCP scans.

UDP scans.

OS identification scans.
Account scans.

Often ping (ICMP) is blocked on
the gateway of the network.

Figure 2.16 Ping sweeps

Login anonymous
Login fred fred

Login user password
Login root

Login default

|
\
\
AN
AN
~

~
~
~
~
~

Typical problems:

Anonymous logins

Using the same password as user ID
Using password as password.

Using root login

Using system default logins

Weak passwords

Well-known passwords

Social Engineering

Typical scans:

Ping sweeps.

TCP scans.

UDP scans.

OS identification scans.
Account scans.

4

-
Directory

server

e
~

T

— ¥

(i

/K

E-Commerce
server

2.9 Running Snort

Figure 2.17 Account sweeps

A typical method of running Snort is:

W.Buchanan 19

snort -v -c bill.rules -dev -1 1 -p -1 c:\\bill -K ascii

where -c identifies the rules file, -v identifies verbose mode, -1 defines the directory
for the alerts file (alert.log), and the —K option defines that the format of the log. An
example rule in the file is:

alert tcp any any -> any any (content:'the'"; sid: 999;
msg:"The found";)

A run of the Snort gives: Interface number

C:\Snort\bin> snort -v -c bill_.rules -dev -i 1 -1 bill -K ascii
Running in IDS mode
--== Initializing Snort ==-—-
Initializing Output Plugins!
Var "_ADDRESS®" redefined
Var "\Device\NPF_{3DFE7A22-72FF-458C-80E2-C338584F5F71} ADDRESS" defined, value
len = 25 chars, value = 192.168.0.0/255.255.255.0
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file bill._rules
++++++
Initializing rule chains...
1 Snort rules read...
1 Option Chains linked into 1 Chain Headers
0 Dynamic rules
L T L S

Tagged Packet Limit: 256

e [thresholding-config]-----—------"-"-"-"-""""""-"-"-"-"----———
| memory-cap : 1048576 bytes

e [thresholding-globall------———--—-——--"--"-"-"-"-"-"-"-"-"""-"-"--————
| none

e [thresholding-local]--—-—---—-—-----"-"-"-"-"-"""""-""-"“"-"-———
| none

e [suppression]-------———-—--————"—————— -
| none

Rule application order: ->activation->dynamic->pass->drop->alert->log
Log directory = bill

Verifying Preprocessor Configurations!

0 out of 512 flowbits in use.

Initializing Network Interface \Device\NPF_ {3DFE7A22-72FF-458C-80E2-C338584F5F71
b
Decoding Ethernet on interface \Device\NPF {3DFE7A22-72FF-458C-80E2-C338584F5F71

+--[Pattern Matcher:Aho-Corasick Summary]-----—--——-——-———————————
Alphabet Size > 256 Chars

| :

| Sizeof State : 2 bytes

| Storage Format > Full

| Num States : 4

| Num Transitions : 6

| State Density > 0.6%

| Finite Automatum : DFA

| Memory > 2.23Kbytes

-—== Initialization Complete ==--
s -*> Snort! <*-
0")~ Version 2.6.1.2-0DBC-MySQL-FIexRESP-WIN32 (Build 34)
e By Martin Roesch & The Snort Team: http://www.snhort.org/team.html
(C) Copyright 1998-2006 Sourcefire Inc., et al.

Not Using PCAP_FRAMES

01/10-17:52:40.507621 0:15:0:34:2:F0 -> 0:18:4D:B0:D6:8C type:0x800 len:0x86
192.168.0.3:10603 -> 146.176.222.183:2304 TCP TTL:128 TOS:0x0 1D:18857 IpLen:20
DgmLen:120 DF

***AP**E Seq: Ox34EFOA67 Ack: 0x301650BD Win: 0x40BO TcplLen: 20

20

52 50 59 20 30 20 30 20 2E 20 30 20 35 39 OD OA RPY O O . 0 59..
43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 61 70 Content-Type: ap
70 6C 69 63 61 74 69 6F 6E 2F 62 65 65 70 2B 78 plication/beep+x
6D 6C OD OA OD OA 3C 67 72 65 65 74 69 6E 67 3E ml...._<greeting>
3C 2F 67 72 65 65 74 69 6E 67 3E 45 4E 44 0D OA </greeting>END..
=4=4=4=+=4=+=+=4+=4+=4+=4=4+=4=4+=+=4=+=+=4=+=4=4+=+=4=+=+=4=+=4=+=+=4=4=4=4=+=4

After generating some network traffic with the word “The” in it gives:

[**] [1:999:0] The found [**]

[Priority: 0]

01/10-17:59:05.921463 0:15:0:34:2:F0 -> 0:18:4D:B0:D6:8C type:0x800 len:0x229
192.168.0.3:10688 -> 66.249.93.99:80 TCP TTL:128 TOS:0x0 1D:19086 IpLen:20
DgmLen:539 DF

*FEAP*** Seq: Ox54455E9E Ack: 0x25828CFC Win: 0x4308 TcplLen: 20

[**] [1:999:0] The found [**] Alert!

[Priority: 0])
01/10-17:59:13.124776 0:15:0:34:2:F0 -> 0:18:4D:B0:D6:8C tType-uxouu TEIT-UXzo%
192.168.0.3:10688 -> 66.249.93.99:80 TCP TTL:128 TOS:0x0 ID:19096 IpLen:20
DgmLen:598 DF

*RAAPF** Seq: 0x54456091 Ack: Ox2582A1E9 Win: Ox3F4D TcpLen: 20

[**] [1:999:0] The found [**]

[Priority: 0]

01/10-17:59:13.236763 0:15:0:34:2:F0 -> 0:18:4D:B0:D6:8C type:0x800 len:0x1BB
192.168.0.3:10690 -> 143.252.148.160:80 TCP TTL:128 TOS:0x0 1D:19102 IpLen:20
DgmLen:-429 DF

*FEAP*** Seq: OXCA6A04D7 Ack: O0xB92991CD Win: 0x4470 TcpLen: 20

it can be seen that the date and time is logged for each alert. The source and destina-
tion MAC addresses are also defined (Figure 2.18), along with the IP (Figure 2.19)
and TCP parts (as shown in Figure 2.20).

IP Header TCP Header
Header length | Type of service Source port
Total length Destination port
Identification
0 | D | M | Fragment Offset B Sequence number
Time-to-Live Protocol

Header Checksum - Acknowledgement number

- Source IP Address Data offset Reserved/Flags

Window

I~ Destination IP Address Checksum

UrgentPtr

[Jercwaoesmac] Toe [i

Data frame
[**]1 [1:0:0] The
[Priority: O]
01/16-22:27:
len:0x169
192.168.0.22:445 -> 192.168.0.20:3554 TCP TTL:128 TOS:0x0 ID:774
IpLen:20 DgmLen:347 DF
FEXAP*** Seq: OxXF842A9D3 Ack: Ox3524EE7B Win: 0x4321 TcplLen: 20

7286762 0:60:B3:68:B1:10 -> 0:3:6D:FF:2A:51 type:0x800

Remember... IP addresses can be spoofed ... the MAC addresses can't (well
it’s difficult).

Figure 2.18 Ethernet headers

W.Buchanan 21

IP Header

TCP Header

Header length |

Type of service

Source port

/

Total length

Destination port

|

Identification

ofo[m]

Fragment Offs}t\

— Sequence number

Time-to/Live

Prc\to&)l\

/

HeadeNecksum

— Acknowledgement number

~ / Source IP Addxess \ Data offset Reserved/Flags
Window
. / Destination IP Address \ Checksum
\ UrgentPtr

[**] /[1:07
[Priority;
01/1p-22:2

len:0x169 |

0] The found \.
0]

. [**]
7:35.286762 0:69:B3:68:B1:1

-AN0:3:6D:FF:2A:5]N\ type:0x800

192/168.0.22:445 -> 192.168.0.20:3554 TCP TTL:128 TOS:0x0
IpLen:20 DgmLen:347 DF

I1D:774

FRXAP*** Seq: OxF842A9D3 Ack: Ox3524EE7B Win: 0x4321 TcpLen: 20

Figure 2.19 IP headers

IP Header TCP Header
Header length | Type of service Source port
Total length / Destination port
Identification
— Sequence number
0 I DI M I Fragment Offset
Time-to-Live Protocol

Header Checksum

— / Ack| wled}ement number

= Source IP Address foatapffset /| Reserved/Flags
/ / Window ,
Destination IP Address Checksuyﬁ

[**] [1:0:0] The fou
[Priority: 0]
01/16-22:27:35.288762 0:60;
len:0x169
192.168.0.22:445 -> 192,168.0.20:3554
IpLen:20 DgmLen:347
*REAP*** Seq: OxF842A9D3 Ack: Ox3524EE7B Win: 0x4321 TcplLen: 20

:68:B1710 ->/0:3:6D:FF:2A:51 type:0x800

P TTL:123 TOS:0x0 ID:774

Figure 2.20 TCP headers

Snort creates logs for each port-to-port connection for each host on the network (as
illustrated in Figure 2.21). A key element of detecting different types of traffic is in
the analysis of the TCP flags. These are (UAPRSF):

* Uis the urgent flag (URG).

* A the acknowledgement flag (ACK).

¢ P the push function (PSH).

* R the reset flag (RST).

* Sthe sequence synchronize flag (SYN).
* F the end-of-transmission flag (FIN).

22

log
192.168.0.1 TCP_3423-445.ds -~~~

192.168.0.2 TCP_3424-139.ids
%831238307 TCP_3521-445.ids

192.168.0.21 TCP_3529-139.ids

192.168.0.24 TCP_3554-445.ids /'Log of traffic
192.168.0.25 : /" between port 3423 and
192.168.0.60 TCP_3566-445.1ds /455 toffrom 192.168.0.20

’
.

4

01/16-22:11:15.833440 192.168.0.20:3423 -> 192.168.0.22:445

TCP TTL:128 TOS:0x0 ID:975 lIpLen:20 DgmLen:48 DF

FxxkAAS* Seq: 0x26885B8B Ack: OxO Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

B R R e s b e e e e B e e e e B e e e R e e

01/16-22:11:15.835497 192.168.0.22:445 -> 192.168.0.20:3423

TCP TTL:128 TOS:0x0 1D:653 lIpLen:20 DgmLen:48 DF

*rAAFXSH Seq: OXE9A4004C Ack: 0x26885B8C Win: 0x4470 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+ =+=+ =+ =+ =+ =ttt =t s S S s S s S s S S S s S s S S s S S S S s s S s =

01/16-22:11:15.835571 192.168.0.20:3423 -> 192.168.0.22:445

TCP TTL:128 TOS:0x0 ID:977 lIpLen:20 DgmLen:40 DF
FHRXAKRXIE Seq: 0x26885B8C Ack: OXE9A4004D Win: O0x4470 TcpLen: 20

Figure 2.21 TCP headers

2.9.1 TCP flags
A client-server connection normally involves an initial handshaking to negotiate the

connection, such as:

Client Server
1. CLOSED LISTEN
2. SYN-SENT -> <SEQ=999><CTL=SYN> SYN-RECEIVED
3. ESTABLISHED <SEQ=100><ACK=1000><CTL=SYN,ACK> <- SYN-RECEIVED
4. ESTABLISHED -> <SEQ=1000><ACK=101> <CTL=ACK> ESTABLISHED

This is known as the three-way handshake. It involves: a <SYN> from the client to
the server; a <SYN, ACK> from the server to the client (to acknowledge the connec-
tion from the server); and an <ACK> from the client to the server (to finalise the
connection). The SYN flag is thus important in detecting a client connecting to a
server. Thus, an incoming SYN flag is important in detecting the start of a connection
from outside the network to a server inside the network, whereas an outgoing SYN
flag identifies a connection to a server outside the network. The main flags are:

F FIN S SYN RRST P PSH
A ACK UURG

and the following modifiers can be set to change the match criteria:
+ match on the specified bits, plus any others
* match if any of the specified bits are set

! match if the specified bits are not set

An example to test for SYN flag is:

W.Buchanan 23

‘alert tcp any any -> any any (Fflags:S; sid:999)

It is often important to know the flow direction (such as coming from or going to a
sever), the main flow rules options are:

* to_client. Used for server responses to client.
* to_server Used for client requests to server.
e from_client. Used on client responses.

* from_server. Used on server responses.

* established. Established TCP connections.

For example to test for an FTP connection to the user’s computer:

alert tcp any any -> $HOME_NET 21 (flow: from_client;
content:"CWD"; nocase; message: "CWD incoming'; sid:999)

Figure 2.22 shows an example of the flags that are set. In this case, the A and S flags
identify the SYN, ACK sequence (which occurs when the server responds back to the
client for the connection. Notice that it goes S (SYN), S/A (SYN-ACK), and then A
(ACK), which completes the creation of the client-server connection.

IP Header TCP Header
Header length|[Type of service Source port
Total length Destination port
Identification s b
0 I DI M I Fragment Offset equence numoer

Time-to-Live Protocol

Header Checksum — Acknowledgement number

r Source IP Address Data offset I UAPRSF
Window—"
- Destination IP Address _ Cfecksuin
| UrgentPtr
|

01/16-22:11:15.833440 192.168.0.20:3423 —> 10 0.22:445

TCP TTL:128 TOS:0x0 1D:975 IpLen:20 Dgnle

sxxxaxSx Seq: Ox26885B88 Ack: OxD 0x4000 Tcplen: 28

TCP Options (4) => MSS: 146Q <+— SYN

497 192.168.0.22:445 -> 192.168.0.20:3423

5 0S:0x0 1D:653 IpLen:z20 DgmLen:48 DF

FEREA*ES* Seq: OXE9A4004C Ack: 0x26885B8C Win: 0x4470 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK <+«— SYN/ACK

01/16-22:11:15.835571 192.168.0.20:3423 -> 192.168.0.22:445

TCP TTL:128 TOS:0x0 ID:977 IpLen:20 DgmLen:40 DF < ACK
FrRXAXFRX Seq: 0x26885B8C Ack: OXE9A4004D Win: 0x4470 TcpLen: 20

Figure 2.22 Example flags

Along with this Snort can be used to analyse the ARP translations on the network.
This gives a pointer to the devices which are asking to resolve the MAC address of a
host (Figure 2.23). Note that the ARP requests are sent to everyone on the same net-
work (which is a domain bounded by router ports).

24

Switch ’
Devices can _

only communicate
directly if they have
they have the

MAC address and

|

-

|

ARP request: Who has 192.168.0.1687?

IP address.

01/16-09:31:08.
01/16-09:45:59
01/16-09:45:59
01/16-09:46:03.
01/16-09:46:10.
01/16-09:46:10.

785149 ARP
.458607 ARP
-459159 ARP
857325 ARP
125715 AR
125930 A

|

ARP request is broadcast to the network

who-has 192.168.0.168 tell 192.168.0.22
who-has 192.168.0.42 tell 192.168.0.216
reply 192.168.0.42 is-at 0:20:18:38:B8:63
who-has 192.168.0.104 tell 192.168.0.198
who-has 192.168.0.15 tell 192.168.0.38
who-has 192.168.0.38 tell 192.168.0.15

ARP reply is sent to the network, on which every node on the segment updates its ARP table

Figure 2.23 ARP log

2.10 User, machine and network profiling

One of the best ways of detecting human behaviour, especially in detecting fraud, is

user profiling. For this, an agent can detect a given user, and build up a profile on
them (Figure 2.24). If the behaviour of the user changes, it may be that an intruder
has used their account. For example a user might type at a speed of 30 words per mi-
nute, whereas an intruder who has logged on as the user might be detected if they
type at 60 words per minute. This method, though, has many ethical issues, which
would have to be overcome before it is implemented in a system.

)

Name: Fred McLean
Nationality: USA
Location: Washington

Name: Fiona Smith

Nationality: British

Location: Edinburgh

Gender: Female

Typical purchase: Computer equipment

Average Purchases/week: 5
Average Value of purchases: £30
Browser used: Mozilla

Date of last purchase: 6 May 2008
Email address: f.smith@nowhere

Name: Amélie Cheney
Nationality:

4 Email a¢

Transactions are
checked
against user profile

Gender: Male

Typical purchase: Fish Food
Average Purchases/week: 50
Average Value of purchases: $4
Browser used: IE

Date of last purchase: 18 Sept 2008
Email address: f,

Name: Michel Weber
Nationality: German
Location: Munich
Gender: Male
Typical purchase: Flowers
Average Purchases/week: 0.005
Average Value of purchases: €43
French, Browser used: Opera
ris / Date of last purchase: 1 Mar 2007
ale Email address: m_weber@de
zs/e: Clothes

ases/week: 70

ajGe of purchases: €13
ed: Mozilla
é;st purchase: 16 Sept 2008 ,
dress: a.cheney@fr.edu

~ SIS Name: A.N.Other
v : W Nationality: Any
s *3 Location: Nowhere
4 Gender: Female/Male
Typical purchase: High-value goods
Average Purchases/week: 1000

Average Value of purchases: $9999
Browser used: Not known

Date of last purchase: Today

Email address: doesnt@exist

Figure 2.24 User profiling

W.Buchanan 25

Typical methods of profiling users might relate to typing speeds, applications which
they typically run, common typing errors, working hours, and so on. For host profil-
ing it is possible to define a normal benchmark for a host. For example, a test could
be run for one day, and it would profile the machine as:

Processes running range = 20-30

CPU utilization (average per minute) = 0-30%

Free disk space (average per minute) = 100MB - 1GB
Memory Available = 1.2GB -2.4GB

Thus if the number of processes increased to 40, then this could be flagged as a devi-
ation from the norm. The calibration and training period is obviously important, in
order to not overload the adminstrator with false alerts.

For network profiling, it is possible to listen to network traffic for a given amount of
time, and define benchmarks on normal traffic. For example a profile might be:

IP traffic (per hour) = 30-85%
TCP traffic (per hour) = 25-75%
HTTP traffic (per hour) = 30-50%
FTP traffic (per hour) = 0-5%

Thus the detection could be based on monitoring the amount of traffic over hourly
periods, and if it went outwith these limits, the system would generate an alert. An
example might be if the FTP traffic increased to 10% over an hourly period. This
might help identify large amount of uploads/downloads for file transfer.

2.11 Honey pots

Sometimes it is possible to create a honey-pot, which attracts an intruder so that they
can be caught before they do any damage. It also can help to identify the propagation
of viruses and/or worms. An example of a low interaction honeypot is Honeyd,
which uses typically scripts to simulate a host (Figure 2.25). Honey pots are currently
under investigation by many researchers, but may have some moral issues, as they
can be setup to trap intruders. A honey pot is typically setup with required weak-
nesses, such as (Figure 2.26):

* Default administrator/password.

* Dummy users with weak passwords.

* Ports open for connection.

* Reacting to virus/worm systems (but simulate conditions).

The main types of honeypots are:

e High-interaction honeypot. This simulates all the aspects of the operating system
and the device.

26

e Low-interaction honeypot. This simulates only part of the network stack (such as
for Honeyd). It can be virtual (from a virtual machine) or simulated by a real ma-
chine.

An example script for Honeyd in order to simulate a Windows XP host, which has
open ports of 110 (POP-3), 80 (Web), 21 (FTP) and 22 (SSH), and blocked ports of 25
(SMTP) and 139 (NetBIOS):

create default

set default personality "Windows XP™

set default default tcp action reset

add default tcp port 110 *"sh scripts/pop.-sh™

add default tcp port 80 "perl scripts/iis-0.95/main.pl"
add default tcp port 25 block

add default tcp port 21 "sh scripts/ftp.sh”

add default tcp port 22 proxy $ipsrc:22

add default udp port 139 drop

set default uptime 3284460

which is using and an example of a simulation of a Cisco PIX firewall with an open
Telnet port:

Cisco router

create router

set router personality "Cisco PIX Firewall (Pix0S 5.2 - 6.1)"
add router tcp port 23 "/usr/bin/perl scripts/router-telnet_pl™
set router default tcp action reset

set router uid 32767 gid 32767

set router uptime 1327650

Bind specific templates to specific IP address

IFf not bound, default to Windows template

bind 192.168.1.150 router

"
o

create default
set default personality "windows XP"
set default default tcp action reset
add default tcp port 110 "sh scripts/pop.sh"
OLI U LSRN (OLel - i default tcp port 80 "perl scripts/iis-0.95/main.pl"
3), 80 (HTTP), 21 (FTP, ENLECISz ULk tcp port 25 block
22 (SSH) add default tcp port 21 "sh scripts/ftp.sh"
add default tcp port 22 proxy $ipsrc:22
add default udp port 139 drop
set default uptime 3284460

Cisco router

= create router
/ B sct router personality "Cisco PIX Firewall (Pix0S 5.2 -
6.1)"
@ add router tcp port 23 "/usr/bin/perl scripts/router-

i . telnet.p1”
I;‘ow lnterta(EF:‘c.)n set router default tcp action reset
oneypot. This set router uid 32767 gid 32767

simulates only part of the PR T kY3 L11)
DEWT G ESEIC SCIOE-E # Bind specific templates to specific IP address

i : for Honeyd) # If not bound, default to windows template
High mterac"?n - can be virtual (from a virtual bind 192.168.1.150 router
honeypot. This machine) or simulated by another

simulates all the aspects machine.
of the operating system

Figure 2.25 Honeyd

W.Buchanan 27

This device has all the required weaknesses,
such as:

o Default administrator/password.

o Dummy users with weak passwords.

o Ports open for connection.

¢ React to virus/worm systems (but simulate
conditions).

Intruder

Servers/

Honeypot Q \
) S
8 @

Figure 2.26 Honeypots

2.12 In-line and out-of-line IDSs

Snort is seen as an out-of-line IDS, as it typically passively monitors the data packets
and does not take any action. This is defined as an out-of-line IDS (Figure 2.27). An
in-line IDS, such as the Cisco IDS is embedded into the Cisco IOS, and can be used to
take action on intrusions. In a Cisco IDS, each type intrusion has a unique ID, such as
3041 which relates to a data packet with the SYN and FIN flags set. The main classifi-
cations for Cisco IDS signatures are: Information (atomic), Information (compound),
Attack (atomic), Attack (compound), where an atomic element identifies one instance
of the intrusion, and a compound element identifies more than one intrusion ele-
ment. An example from a Cisco IDS is:

(config)# ip audit ?

attack Specify default action for attack signatures

info Specify default action for informational signatures

name Specify an IDS audit rule

notify Specify the notification mechanisms (nr-director or log) for the
alarms

po Specify nr-director®s PostOffice information (for sending events

to the nr-directors

signature Add a policy to a signature

smtp Specify SMTP Mail spam threshold
(conflg)# ip audit notify ?

lo Send events as syslog messages

nr- dlrector Send events to the nr-director
(config)# ip audit notify log
(config)# logging 132.191.125.3
(config)# ip audit ?

attack Specify default action for attack signatures

info Specify default action for informational signhatures

name Specify an IDS audit rule

notify Specify the notification mechanisms (nr-director or log) for the
alarms

po Specify nr-director®s PostOffice information (for sending events

to the nr-directors
signature Add a policy to a signature

28

smtp Specify SMTP Mail spam threshold
(config)# ip audit info ?

action Specify the actions
(config)# ip audit info action ?

alarm Generate events for matching signatures

drop Drop packets matching signatures

reset Reset the connection (if applicable)
(config)# ip audit info action drop
(config)# ip audit attack action reset
(config)# ip audit signature ?

<1-65535> Signature to be configured
(config)# ip audit signature 1005 disable
(config)# ip audit smtp ?

spam Specify the threshold for spam signature

<Cr>
(config)# ip audit smtp spam ?

<1-65535> Threshold of correspondents to trigger alarm
(config)# ip audit smtp spam 4

In-line IDS, which can decide
to drop a packet, alarm
(send an alert/log) or reset a
connection.

Out-of-line IDS, which
passively listens to traffic
and cannot actually drop
packets (unless there is an
IPS)

change/upgrade.

Out-of-line IDS has the
advantage of being able to
more easily craft an IDS rule,
but cannot take actions,
directly.

~ | Intrusion Detection
~_ | System In-line IDS has the advantage
Syslog S~ that they can act on the
Server intrusion, but it has a
(stores alerts/logs/ g performance impact. The
etc) @ signatures are also difficult to

Figure 2.27 IDS (in-line and out-of-line)

2.13 False and true

A key factor in any intrusion detection system is its success in actually determining
threats. For this, there are a number of key metrics which defines the success of the
system:

e False positives. This is the number of intrusions that the IDS failed to spot.

e False negatives. This is the number of alerts that were generated that were not
actually intrusions, and could thus be wasteful in investigation time.

e True positives. This is the number of actual number of intrusions which were
correctly identified.

W.Buchanan 29

A good IDS will give a high number of true positives against false negatives, as too
many false negatives will often cause the administrator to become desensitized to
alerts. A key factor in this is often to have some sort of filtering on the alerts, so that
key alerts overrule lesser alerts. Also, if the number of false positives is too high
compared with the number of true positives, the administrator might feel that the
system is missing too main intrusions. There should thus be a continual refinement
of the IDS rules in order to give the system the correct balance. Often what happens
is that experience of system operations shows the right sensitivity of the system.

2.14 Customized Agent-based IDS

The usage of standard IDSs such as Snort is an excellent method of detecting intru-
sions, but often they are generalized in their detection engine, and have a significant
overhead in detecting certain types of intrusions. It has been shown by many re-
searchers that Snort can be made to miss alerts and even crash on relatively low data
throughputs. Thus, in several applications, the use of customized agents are required
which focus on detecting certain types of network traffic. Along with this, it can inte-
grate with other system detection elements on a host, such as detecting changes to
system files, and in detecting CPU usage. Thus agent-based systems using WinPcap
are useful in optimizing intrusions, without the footprint of a full-blown system. The
software developed in Section 2.15 focuses on customized agent-based IDS. This sys-
tem is illustrated in Figure 2.28, where a configuration agent writes the Snort rules,
and then invokes the Snort agent, which reads the rule file. The security agent then
reads the alerts from Snort.

_ TN S 4. Device
Requirements reconfiguration
,,,,,,,,,,,, .
- T T~ i
/ ~o Reconfig agent
s [y ~
/s \ AN
s \ N

1. Write a Snort //
file based onthe /

\
3. View/process \ 2. Invoke SNORT
requirements ,'

alerts \ and get it to read the
\ rules

SNORT agent

alert tcp $EXTERNAL_NET any -> $HOME_NET 21
(msg:"FTP CWD ~root attempt";
flow:to_server,established; content:"CWD";
nocase;

content:*~root™”; nocase; distance:1; pcre:"
ACWD\s+~root/smi"; classtype:bad-unknown;
sid:z336; rev:7;)

[**]1[1:0:0] FTP CWD ~root attempt.... [**]
[Priority: 0]
01/16-22:27:35.286762 0:60:B3:68:B1:10 -> 0:3:6D:FF:2A:51 type:0x800

len:0x169

192.168.0.22:5432 -> 192.168.0.20:21 TCP TTL:128 TOS:0x0 ID:774
IpLen:20 DgmLen:347 DF

AP Seq: 0xF842A9D3 Ack: 0x3524EE7B Win: 0x4321 TcpLen: 20

30

Figure 2.28 Agent-based IDS

2.15 Tutorial

2.14.1

2.14.2

2.14.3

2144

2.14.5

2.14.6

2.14.7

The on-line exercise for this chapter are at:
http://buchananweb.co.uk/security00.aspx
and select Introduction to IDS [Test].

Which Snort command will filter for outgoing email requests:
A alert tcp any any -> any 21 msg "Email sent”

B alert tcp any any -> any 25 msg "Email sent”

C alert tcp any 21 -> any any msg "Email sent"

D alert tcp any 25 -> any any msg "Email sent”

E alert tcp any 25 -> any 21 msg "Email sent"

Which Snort command will filter for incoming email from the server:
A alert tcp any any -> any 21 msg "Email received"

B alert tcp any any -> any 25 msg "Email received"

C alert tcp any 21 -> any any msg "Email received"

D alert tcp any 25 -> any any msg "Email received" "

E alert tcp any 25 -> any 21 msg "Email received" "

Which Snort command will filter for outgoing FTP requests:
A alert tcp any any -> any 21 msg "FTP out"

B alert tcp any any -> any 25 msg "FIP out"

C alert tcp any 21 -> any any msg "FTP out"

D alert tcp any 25 -> any any msg "FTP out"

E alert tcp any 25 -> any 21 msg "FTP out”

Which Snort command will filter for incoming FTP response from an FTP server:
A alert tcp any any -> any 21 msg "FTP response”

B alert tcp any any -> any 25 msg "FTP response”

C alert tcp any 21 -> any any msg "FTP response”

D alert tcp any 25 -> any any msg "FTP response”

E alert tcp any 25 -> any 21 msg "FTP response”

Which of the following is unlikely to be a port that a client uses to connect to an FTP
server:

A 21

B 3100

C 3110

D 3111

E 4444

Which Snort command line option is used to define that packets are logged:
A -v B -C

C- D -1

E -k

W.Buchanan 31

2.14.8

2.14.9

2.14.10

2.14.11

2.14.12

2.14.13

2.14.14

2.14.15

2.14.16

32

Which Snort command line option is used to read a rules file:
A-v B -C

C - D -1

E -k

Which Snort command line option is used to run in verbose mode:
A -v B -C

C-n D -1

E -k

Which Snort command line option is used to define the log directory:
A -v B -C

C-n D -1

E -k

In Snort how might the home network variable to set
A var SHOME_NET=192.168.0.12\24

B var SHOME_NET 192.168.0.12\24

C $HOME_NET 192.168.0.12\24

D $HOME_NET=192.168.0.12\ 24

E var SHOME_NET is 192.168.0.12\ 24

In Snort, which is the default alert file
A alert.txt

B snort.txt

C myalerts.ids

D alert.ids

E source.alert

What does the "SYN", "SYN,ACK", "ACK" sequence signify
A The identification of a buffer overflow

B The retransmission of data

C The end of a client-server connection

D The handshaking of data for a client-server connection

E The initial negotiation of a client-server connection

For the "SYN", "SYN,ACK", "ACK" sequence, who generates the initial "SYN"
A The client

B The server

C Either the client or the server

For the "SYN", "SYN,ACK", "ACK" sequence, who generates the "SYN,ACK"
A The client

B The server

C Either the client or the server

For the "SYN", "SYN, ACK", "ACK" sequence, who generates the "ACK"
A The client

B The server
C Either the client or the server

2.16 Software tutorial

Snort is a useful program for implementing IDS, but it is rather general-purpose, and
it can easily be over-burdened with high amounts of network traffic. This tutorial
shows how it is possible to create a network sniffing agent, which can be built to pro-
cess simple rules.

2.15.1

The WinPcap library can be used to read the source and destination IP
addresses and TCP ports. For this the TCPPacket class is used. Initially
modify the program in:

http://buchananweb.co.uk/srcSecurity/unit01_2.zip

so that it now displays the source and destination IP and TCP ports [4]:

private static void device_PcapOnPacketArrival(object sender, Packet packet)
{

if(packet is TCPPacket)
{

DateTime time = packet.PcapHeader.Date;
int len = packet.PcapHeader.PacketLength;

TCPPacket tcp = (TCPPacket)packet;
string srclp tcp.SourceAddress;
string dstlp tcp.DestinationAddress;
int srcPort = tcp.SourcePort;

int dstPort = tcp.DestinationPort;

Console._WriteLine(C"{0}:{1} -> {2}:{3}", srclp, srcPort, dstlp, dstPort);

2.15.2

A sample run, using a Web browser connected to google.com gives:

84.53.143.151:80 -> 192.168.1.101:3582
84.53.143.151:80 -> 192.168.1.101:3582
192.168.1.101:3582 -> 84.53.143.151:80

where it can be seen that the Web server TCP port is 80, and the local port
is 3582. Run the program, and generate some network activity, and de-
termine the output:

Demo: http:// buchananweb.co.uk/media/unit02_1.htm

Modify the program in 2.15.1, so that it only displays traffic which is dis-
tend for a Web server. Prove its operation.

W.Buchanan 33

2.15.3 Next modify the code so that it detects only ICMP packets (using the IC-
MPPacket class), and displays the source and the destination addresses,
along with the TTL (time-to-live) value [4]:

private static void device_PcapOnPacketArrival(object sender, Packet packet)
{

if(packet is ICMPPacket)

{

DateTime time = packet.PcapHeader.Date;
int len = packet.PcapHeader.PacketLength;

ICMPPacket icmp = (ICMPPacket)packet;
string srclp=icmp.DestinationAddress;
string dstlp=icmp.SourceAddress;

string ttl=icmp.TimeToLive.ToString();

Console.WriteLine("{0}->{1} TTL:{2}", srclp, dstlp, ttl);

A sample run is shown next for a ping on node 192.168.1.102:

Press any <RETURN> to exit

192.168.1.101->192.168.1.102 TTL:128
192.168.1.102->192.168.1.101 TTL:128
192.168.1.101->192.168.1.102 TTL:128

Run the program, and ping a node on the network. What is the output,
and why does it show a number responses for every ping;:

2.15.4 Modify the program in 2.15.3, so that it displays the Ethernet details of the
data frame, such as [4]:

private static void device_PcapOnPacketArrival(object sender, Packet packet)
{

iT(packet is EthernetPacket)

{

EthernetPacket etherFrame = (EthernetPacket)packet;

Console.WriteLine("At: {0}:{1}: MAC:{2} -> MAC:{3}",
etherFrame.PcapHeader .Date.ToString(),
etherFrame.PcapHeader .Date_Millisecond,
etherFrame.SourceHwAddress,
etherFrame.DestinationHwAddress);

2.15.5 It is possible to read the contents of the data packet by converting it to a
byte array (using the Data property), and then convert it to a string, such
as:

private static void device_PcapOnPacketArrival(object sender, Packet packet)
{

if(packet is TCPPacket)

{

DateTime time = packet.PcapHeader.Date;

int len = packet.PcapHeader.PacketLength;

TCPPacket tcp = (TCPPacket)packet;

byte [] b = tcp.Data;

System.Text_ASCIl IEncoding format = new System.Text.ASCIlIEncoding();
string s = format.GetString(b);

34

s=s.ToLower();
ifT (s.IndexOf("intel')>0) Console._WriteLine("Intel found...'");

The above code detects the presence of the word Intel in the data packet.
Run the program, and then load a site with the word Intel in it, and prove
that it works, such as for:

¥ inkel - Micromoft Intermet Erglerer L =T M %]

Intel found...
Intel found...

2.15.6 It is then possible to filter for source and destination ports, and with source
and destination addresses. For example, the following detects the word In-
tel on the destination port of 80:

private static void device_PcapOnPacketArrival(object sender, Packet packet)
{
if(packet is TCPPacket)
{
DateTime time = packet.PcapHeader.Date;
int len = packet.PcapHeader.PacketLength;
TCPPacket tcp = (TCPPacket)packet;
3 int destPort = tcp.SourcePort;
byte [] b = tcp-Data;
System.Text.ASCIlIEncoding format = new System.Text.ASCIlIEncoding();
string s = format.GetString(b);
s=s.ToLower();
if (destPort==80 && (s-IndexOf("intel)>0))
Console.WriteLine(Intel found in outgoing on port 80...");

215.7 A key indication of network traffic is in the TCP flags. The following deter-
mines when the SYN flag is detected, and also the SYN, ACK flags:

if(packet is TCPPacket)
{

DateTime time = packet.PcapHeader.Date;

int len = packet.PcapHeader.PacketLength;

TCPPacket tcp = (TCPPacket)packet;

int destPort = tcp.SourcePort;

if (tcp-Syn) Console. erteLlne('SYN request');

if (tcp-Syn && tcp.Ack) Console._WriteLine("'SYN and ACK™);

W.Buchanan 35

Prove the operation of the code, and modify it so that it detects a SYN re-
quest to a Web server (port: 80), and displays the destination IP address of
the Web server.

2.15.8 Write a program which displays each of the TCP flags, such as:

Packet flags: S----P--
Packet flags: SA-—---—-
Packet flags: -A--—--—-
Packet flags: -A-——-—- F

Hint:

iT (tcp.Syn) Console_Write('S™™) else Console._Write('-"");

i%-(tcp.Fin) Console.WriteLine("'F'") else Console._WriteLine('"-"");

2.17 Snort tutorial

2.16.1 Determine the network interfaces of your machine with the snort -W option:

C:\Snort\bin> snort -W

Interface Device Description

1 \Device\NPF_GenericNdisWanAdapter (Generic NdisWan adapter)

2 \Device\NPF_{3C369413-6967-4192-8CBC-203B57D95189} (Microsoft MAC Bridge)

3 \Device\NPF_{BDOOEDD2-3753-4219-A043-F90108B30EEF} (NET 1P/1394 Miniport)

4 \Device\NPF_{C215B0OA7-CE88-424C-8669-D79264D5CF3E} (Intel(R) PRO/Wireless 2200)

(a) Now run Snort with the interface that you want to use (in this case it is inter-
face 4 — which is the Wireless interface). Note, if you are running Snort, you
normally need to run it in promiscuous mode (which is default). On some
network interfaces, such as the Intel 220BG the interface has a bug and the
promiscuous mode is already set, so add a —p onto the command line:

C:\Snort\bin> snort -dev -1 4 -K ascii
Running in packet dump mode

Initializing Network Interface \Device\

Src MAC

Src IP

/T'

L

b
-—== Initializing Snort ==--
(b) Generate some Web traffic, and view the output, and verify that it is captur-
ing data packets, such as:
— Dest MAC
- O

01/12-11:11:07-410133 0:15:0:34:2:F0 -> 0:C:41:F5:23:D5 type:0x800 len:0x19A

192.168.1.101:2735 -> 146.176.1.188:80 TCP TTL:128 TOS:0x0 1D:13141 IpLen:20 D
Len:-396 DFE
*xXAP**E-Seq: OXCEDC79A8 Ack: O¥E2431ED3 Win: 0x4037 TcpLen: 20
47 54 20 2F 68 6F/6D 65 5F 6E |65 77 2F 69 6D GET /home_new/im

Src TCP

67 65 73 2F 70 7Z 6F 67 5F 6632 2E 67 69 66 ages/prog_f2.gif
48 54 54 50 2F A1 2E 31 OD OA/ 41 63 63 65 70 HTTP/1.1..Accep
| 3A 20 2A 2F 24/0D OA 52 65 6§ 65 72 65 72 3A t: */*_.Referer:

36

20 68 74 74 70 3A 2F 6E 61 70 69 http://www.napi
65 72 2E 61 63 2E 75 { DestTCP 63 63 65 70 er.ac.uk/..Accep
74 2D 4C 61 6E 67 75 65 6E 2D 67 t-Language: en-g
62 65 70 742D 45 6GE 63 6F 64 69 b..Accept-Encodi
6E { DestIP 69 70 2C 20 64 65 66 6C 61 74 ng: gzip, deflat
65 U oA S5 75D 72 2D 41 67 65 6E 74 3A 20 4D e..User-Agent: M
6F 7A 69 6C 6C 61 2F 34 2E 30 20 28 63 6F 6D 70 ozillas4.0 (comp

= - N N

(c) Select one of the TCP data packets, and determine the following:

The source IP address:

The source TCP port:

The destination IP address:
The destination TCP port:

The source MAC address:

The destination MAC address:

The TCP flags:

(d) Next run Snort so that it captures data packets and saves them to a subfold-
er. For this use the -1 option to define the log folder, and -K to save as an
ASCII dump (use mkdir YOURNAME, to create a subdirectory, replacing
YOURNAME with your name):

C:\Snort\bin> snort -dev -i 4 -p -1 YOURNAME -K ascii

Access a few Web sites, and then stop the program, and examine the con-
tents of your newly created folder:

What are the contents of the folder:

Go into one of the folders and view the contents of the IDS file. What does it con-
tain:

(e) Next create a rules file which will detect the word “napier” in a data packet,
for example:

alert tcp any any -> any 80 (content:"napier'™; msg:"Napier detected"; sid:999)

) Save the file as napier.txt, and run the command, such as:

W.Buchanan 37

| C:\Snort\bin> snort -dev -i 4 —-p -1 log -K ascii -c napier.txt

(g) Access the Napier web site, and view some pages, and then go into your log
folder and examine the alert.ids. Its format should be something like:

[**] [1:0:0] Napier detected [**]

[Priority: 0]

01/12-11:47:28.496017 0:15:0:34:2:F0 -> 0:C:41:F5:23:D5 type:0x800 len:0x171
192.168.1.101:3202 -> 146.176.1.188:80 TCP TTL:128 TOS:0x0 1D:15927 IpLen:20 Dgm
Len:355 DF

FHRXAPFF* Seq: 0x54962F22 Ack: Ox746ED796 Win: Ox44A8 TcplLen: 20

[**] [1:0:0] Napier detected [**]

[Priority: 0]

01/12-11:47:28.679437 0:15:0:34:2:F0 -> 0:C:41:F5:23:D5 type:0x800 len:0x175
192.168.1.101:3203 -> 146.176.1.188:80 TCP TTL:128 TOS:0x0 1D:15937 IpLen:20 Dgm
Len:-359 DF

FXRXAPFEE Seq: OxB7930606 Ack: Ox123ED8F3 Win: O0x44A8 TcpLen: 20

What is the contents of the alert.ids file:

Did it detect the word:

(h) Next download the client and server programs from (Figure 2.29):
Y http://buchananweb.co.uk/dotNetClientServer.zip
()] In groups of two, one person should run the server on their computer, and

the other person runs the client, and connects to the server on port 1001.
Make sure that you can chat, before going onto the next part of the tutorial.

./ Basic Server {Author: W.Buchanan) B@=8 _ 0] |5 Basic Client (Author: W.Buchanan) = IMER]
[Foe | File
e o Client connection details Server Connection Details
Listening Port [aa1 Port:] IP to connect to: 152.168.1.101 IP: 192.168.1.101
; J— Port I
Lecal IP [182 1881 101 P | [EFXEEELT Pert to connectio: [1001 oot
Smua: Cannecind Status: [Connected Local sodress: [fo2768 1101
Conneot
Messagetosend: | Sendl.] Messagetosend: | Send
Receive window: [Recavgecialo Receive window: Sendng:s Felo .
| Sending:Hom are you? eceived<< How are your
AutoTrafic
Generate Traffic
fpersecond
NAPIER NAPIER
UNIVERSITY UNIVERSITY

Figure 2.29 Client/server program

) Write a Snort rule which detects the word “napier” in the communica-
tions between the client and server.

What is the Snort rule for this:

38

2.16.2 Write rules which will detect the word Intel in the payload, for FTP,
Telnet, MSN Messenger and HTTP, so that the alerts are:

Intel found in WWW traffic (port 80).
Intel found in Telnet traffic (port 23).
Intel found in FTP traffic (port 21).

Intel found in MSN Messenger traffic.

Verity your rules by running tests.

What are the rules:

(b) Run Snort, and monitor ARP the usage. From another host, ping a few of the
hosts on the subnet, one at a time.

What do you notice from the ARP file during the ping process from the host?

. remember as you are connected to a switch, you will only see your own traffic, and any broadcast traffic, such
as ARPs.

(c) A typical signature of a network attack is a port scan, where an intruder
scans the open ports on a host. It is the objective of this lab to detect these
types of attacks. Using Netstat, determine your connected ports, and using
netstat —a, determine the all your listening port.

Connected ports:

Listing ports:

(d) A factor in security is to determine the TCP ports which are listening on
hosts, as these are the way that an intruder can gain access to a host. Also it
is possible to detect an intruder if they are scanning a network. Thus, down-
load the NMAP portscanner. Note: DO NOT PORT SCAN ANY OTHER
MACHINE THAN YOUR NEIGHBOUR’S COMPUTER. An example is at:

http://download. insecure.org/nmap/dist/nmap-3.95-win32.zip

W.Buchanan 39

A sample run is:

> nmap 192.168.1.1

Starting Nmap 3.95 (http://www.insecure.org/nmap) at 2006-01-12 13:26 GMT Standard Time

Interesting ports on 192.168.1.1:

(The 1668 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

80/tcp open http

8080/tcp open http-proxy

MAC Address: 00:0C:41:F5:23:D5 (The Linksys Group)

Nmap Ffinished: 1 IP address (1 host up) scanned in 2.969 seconds

Which ports are open:

Using the command netstat —a verify that these ports are open:

(e) Write a rule for Snort which allows a port scan to be detected, and verify
that it works:
Snort rule:

Did it detect the port scan:

(f) Download the client and server program, and run the server on one
machine and set its listening port to 1001. Rerun the port scanner from the
neighbours machine.

% http:// buchananweb.co.uk/dotNetClientServer.zip

Does the port scanner detect the new server port:

(g) Next with the server listing on port 1001. Now write a Snort rule which
detects the incoming SYN flag for a connection from a client to the server.

What is the Snort rule:

40

2.18 Chapter Lecture

The additional material is at:

http://www .asecuritysite.com/security/information/chapter02

2.19 References

[1] http://www.snort.org

[2] http://www.fags.org /rfcs/rfc821. html

[3] http://www.insecure.org/nmap/

[4] This code is based on the code wrapper for WinPcap developed by T.Gal
[http://www.thecodeproject.com/csharp/sharppcap.asp].

W.Buchanan 41

