
 W.Buchanan 1

3 Encryption
 http://buchananweb.co.uk/security00.aspx, Select Principles of Encryption.

3.1 Introduction

The key objectives of this unit are to:

 Define the methods used in encryption, especially for public and private key en-

cryption.

 Understand methods that can be used to crack encrypted content.

 Outline a range of standard encryption methods.

3.2 Introduction

The future of the Internet, especially in expanding the range of applications, involves

a much deeper degree of privacy, and authentication. Without these the Internet

cannot be properly used to replace existing applications such as in voting, finance,

and so on. The future is thus towards data encryption which is the science of cryp-

tographics1, and provides a mechanism for two entities to communicate without any

other entity being able to read their messages. In a secret communications system,

Bob and Alice should be able to communicate securely, without Eve finding out the

contents of their messages, or in keeping other details secure, such as their location,

or the date that their messages are sent (Figure 3.1).

 The two main methods used are to either use a unique algorithm which both Bob

and Alice know, and do not tell Eve, or they use a well-known algorithm, which Eve

also knows, and use some special electronic key to uniquely define how the message

is converted into cipertext, and back again. A particular problem in any type of en-

cryption is the passing of the secret algorithm or the key in a secure way, as Bob or

Alice does not know if Eve is listening to their communications. If Eve finds-out the

algorithm or the key, neither Bob nor Alice is able to detect this. This chapter looks at

some of the basic principles of encryption, including the usage of private-key and

public-key methods. As we will find public and private key methods work together

in perfect harmony, with, typically, private key methods providing in the actual core

encryption, and public key methods providing ways to authenticate, and pass keys.

1 The word crytopgraphy is derived from the Greek words which means hidden, or secret,

writing

http://buchananweb.co.uk/security00.aspx

2 Security and Forensic Computing

Bob

Eve

Communications

Channel
Coding

Algorithm

(ENCODER)

Coding

Algorithm

(DECODER)

Hello

H&$d. H&$d.

Hello

Alice

Figure 3.1 Bob, Alice and Eve

3.3 Simple cipher methods

One method of converting a message into cipher text is for Bob and Alice to agree on

some sort of algorithm which Bob will use to scramble his message, and then Alice

will do the opposite to unscramble the scrambled message. An example of this is the

Caesar code, where it is agreed by Bob and Alice that the letters of the alphabet will

be moved by a certain number of positions to the left or the right. It is named as the

Caesar code as it was first documented by Julius Caesar who used a 3-letter shift.

 In the example in Figure 3.2 the letters for the code have been moved forwards by

two positions, thus a ‘c’ becomes an ‘A’, thus a coded message of ‘RFC’ is decoded as

‘the’. There are several problems with this type of coding, though. The main one is

that it is not very secure as there are only 25 unique codings, thus it would be easy

for someone to find out the mapping. An improvement is to scramble up the map-

ping, such as in a code mapping (Figure 3.3), where a random mapping is used to

deter the conversion. As there are more mappings, it improves the security of the

code (4.031026 mappings), but it is still seen as being insecure as the probability of

the letter in the mapped code is typically a pointer to the mapping. For the code in

Figure 3.3, an ‘A’ appears most often, thus it is likely to be an ‘e’, which is the most

probably letter in written English. Next ‘Q’ appears four times, thus this could be a

‘t’, which is the next most probable. A more formal analysis of the probabilities is

given in Table 3.1, where the letter ‘e’ is the most probable, followed by ‘t’, and then

‘o’, and so on. It is also possible to look at two-letter occurrences (digrams), or at

three-letter occurrences (trigrams), or even with words, where ‘the’ is the most com-

mon word.

 A code mapping encryption scheme is easy to implement, but, unfortunately,

once it has been ‘cracked’, it is easy to decrypt the encrypted data. Normally this type

of cipher is implemented with an extra parameter which changes its mapping, such

as changing the code mapping over time depending on the time-of-day and/or date.

Thus parties which are allowed to decrypt the message know the mappings of the

 W.Buchanan 3

code for a given time and/or date. For example, each day of the week could have a

different code mapping.

 Web link: http://buchananweb.co.uk/flash_coding_shifted.html

 Web link: http://buchananweb.co.uk/security20.aspx

 Web link: http://buchananweb.co.uk/security30.aspx

Figure 3.2 Caesar code

Figure 3.3 Code mapping

 Web link: http://buchananweb.co.uk/security26.aspx

Table 3.1 Probability of occurrences

Letters (%) Digrams (%) Trigrams (%) Words (%)

E 13.05 TH 3.16 THE 4.72 THE 6.42

T 9.02 IN 1.54 ING 1.42 OF 4.02

O 8.21 ER 1.33 AND 1.13 AND 3.15

A 7.81 RE 1.30 ION 1.00 TO 2.36

N 7.28 AN 1.08 ENT 0.98 A 2.09

http://buchananweb.co.uk/security20.aspx

4 Security and Forensic Computing

I 6.77 HE 1.08 FOR 0.76 IN 1.77

R 6.64 AR 1.02 TIO 0.75 THAT 1.25

S 6.46 EN 1.02 ERE 0.69 IS 1.03

H 5.85 TI 1.02 HER 0.68 I 0.94

D 4.11 TE 0.98 ATE 0.66 IT 0.93

L 3.60 AT 0.88 VER 0.63 FOR 0.77

C 2.93 ON 0.84 TER 0.62 AS 0.76

F 2.88 HA 0.84 THA 0.62 WITH 0.76

U 2.77 OU 0.72 ATI 0.59 WAS 0.72

M 2.62 IT 0.71 HAT 0.55 HIS 0.71

P 2.15 ES 0.69 ERS 0.54 HE 0.71

Y 1.51 ST 0.68 HIS 0.52 BE 0.63

W 1.49 OR 0.68 RES 0.50 NOT 0.61

G 1.39 NT 0.67 ILL 0.47 BY 0.57

B 1.28 HI 0.66 ARE 0.46 BUT 0.56

V 1.00 EA 0.64 CON 0.45 HAVE 0.55

K 0.42 VE 0.64 NCE 0.43 YOU 0.55

X 0.30 CO 0.59 ALL 0.44 WHICH 0.53

J 0.23 DE 0.55 EVE 0.44 ARE 0.50

Q 0.14 RA 0.55 ITH 0.44 ON 0.47

Z 0.09 RO 0.55 TED 0.44 OR 0.45

3.3.1 Vigenère cipher

An improved code was developed by Vigenère, where a different row is used for

each character cipher, and is polyalphabetic cipher as it uses a number of cipher alpha-

bets. Then the way that the user moves between the rows must be agreed before

encryption. This can be achieved with a code word, which defines the sequence of

the rows. For example the codeword GREEN could be used which defines that the

rows used are: Row 6 (G), Row 17 (R), Row 4 (E), Row 4 (E), Row 13 (N), Row 6 (G),

Row 17 (R), and so on (see Table 3.2). Thus the message is converted as:

Keyword GREENGREENGREE

Plaintext hellohowareyou

Ciphertext NVPPBNFAEEKPSY

The great advantage of this type of code is that the same plaintext character will be

coded with different values, depending on the position of the keyword. For example,

for a keyword is GREEN, ‘e’ can be encrypted as ‘K’ (for G), ‘V’ (for R), ‘I’ (for E) and

‘R’ (for N). To improve security, the greater the size of the code word, the more the

rows that can be included in the encryption process. Also, it is not possible to deci-

pher the code by simple frequency analysis, as letters will change their coding

depending on the current position of the keyword. It is also safe from analysis of

common two- and three-letter occurrences, if the keysize is relatively long. For ex-

ample ‘ee’ could be encrypted with ‘KV’ (for GR), ‘VI’ (for RE), ‘II’ (for EE), ‘IR’ (for

EN) and ‘RK’ (for NG).

Table 3.2 Coding

Plain a b c d e f g h i j k l m n o p q r s t u v w x y z

 1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

 2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

 3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

 4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

 5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

 W.Buchanan 5

 6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

 7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

 8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

 9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

 Web link: http://buchananweb.co.uk/flash_vin.html

 Web link: http://buchananweb.co.uk/security27.aspx

 Web link: http://buchananweb.co.uk/security29.aspx

3.3.2 Homophonic substitution code

A homophonic substitution code overcomes the problems of frequency analysis of

code, as it assigns a number of codes to a character which relates to the probability of

the characters. For example the character ‘e’ might have 12 codes assigned to it, but

‘z’ would only have one. An example code is given in Table 3.3.

 With this, each of the codes is assigned at random for each of the letters, with the

number of codes assigned relating to the probability of their occurrence. Thus, using

the code table in Table 3.3, the code mapping would be:

Plaintext h e l l o e v e r y o n e

Ciphertext: 19 25 42 81 16 26 22 28 04 55 30 00 32

In this case there are four occurrences of the letter ‘e’, and each one has a different

code. As the number of codes depends on the number of occurrences of the letter,

each code will roughly have the same probability, thus it is not possible to determine

the code mapping from the probabilities of codes. Unfortunately the code is not per-

fect as the English language still contains certain relationships which can be traced.

For example the letter ‘q’ normally is represented by a single code, and there are

three codes representing a ‘u’. Thus, if the ciphertext contains a code followed by one

of three codes, then it is likely that the plaintext is a ‘q’ and a ‘u’.

 A homophonic cipher is a monoalphabetic code, as it only uses one translation

for the code mappings (even though several codes can be used for a single plaintext

letter). This type of alphabet remains constant, whereas a polyalphabet can change its

mapping depending on a variable keyword.

Table 3.3 Example homophonic substitution

a b c d e f g h i j k l m n o p q r s t u v w x y z

http://buchananweb.co.uk/flash_vin.html
http://buchananweb.co.uk/security27.aspx

6 Security and Forensic Computing

07 11 17 10 25 08 44 19 02 18 41 42 40 00 16 01 15 04 06 05 13 22 45 12 55 47

31 64 33 27 26 09 83 20 03 81 52 43 30 62 24 34 23 14 46 93

50 49 51 28 21 29 86 80 61 39 56 35 36

63 76 32 54 53 95 88 65 58 57 37

66 48 70 68 89 91 71 59 38

77 67 87 73 94 00 90 60

84 69 96 74

 72 78

 75 92

 79

 82

 85

3.4 Encryption operators

It is important that the operators used in encryption do not loose any information in

the encryption process, and that the operators must be reversible in some way. Along

with this, the encryption process is fairly processor-intensive, thus the operators

must be fairly simple in their approach for fast conversion for Bob and Alice, but

which involved extensive processing for Eve. The main operators which fit these

characteristics are: bit-shift, eXclusive-OR (X-OR - ) and the mod operators. These

typically can be achieved in a single operation, and can thus be used for fast encryp-

tion and decryption.

 The bit-shift operators can either be left- or right- shift (or more precisely rotate

left, or rotate right operators), where the shifting process normally takes the bits

which exit from one end, and put them onto the other end. This is normally defined

as a rotation – thus we can have a rotate left or a rotate right. For example, an encryp-

tion process might operate by taking one byte at a time and rotating them left by four

places:

Input 1010 1000 1111 0000 0101 1100 0000 0001

Output 1000 1010 0000 1111 1100 0101 0001 0000

Thus the decryption process would merely rotate each of the bits of the bytes by four

places to the right.

 Along with the shift operators, another important operator is the X-OR operator.

Its basic function is:

Bit1 Bit2 Output

0 0 0

1 0 1

0 1 1

1 1 0

Thus an operation could be to X-OR each byte by 0101 0101:

Input 1010 1000 1111 0000 0101 1100 0000 0001

 W.Buchanan 7

X-OR 0101 0101 0101 0101 0101 0101 0101 0101

Output 1111 1101 1010 0101 0100 1001 0101 0100

The great advantage of the X-OR is that, like the bit rotate operators, it preserves the

information in the processed output, and can be undone merely by operating on the

output with the value that was used to process the value. For example:

Output 1111 1101 1010 0101 0100 1001 0101 0100

X-OR 0101 0101 0101 0101 0101 0101 0101 0101

Input 1010 1000 1111 0000 0101 1100 0000 0001

which results in the original value. Thus a simple encryption process might be:

- Take 32 bits at a time.

- Shift bits by four spaces to the left.

- X-OR the value by 1010 1000.

- Shift bits by two spaces to the right.

- X-OR the value by 1010 1000.

Then, the decryption process would be (reading 32 bits at a time):

- X-OR the value by 1010 1000

- Shift bits by two spaces to the left.

- X-OR the value by 1010 1000.

- Shift bits by four spaces to the right.

The other operator is mod, which returns the remainder of a division operation. For

example 29 mod 7 gives 1.

3.5 Key-based cryptography

The main objective of cryptography is to provide a mechanism for two (or more) en-

tities to communicate without any other entity being able to read or change the

message. Along with this it can provide other services, such as:

 Integrity check. This makes sure that the message has not been tampered with by

non-legitimate sources.

 Providing authentication. This verifies the sender identity. Unfortunately most of

the current Internet infrastructure has been build on a fairly open system, where

users and devices can be easily spoofed, thus authentication is now a major factor

in verifying users and devices.

One of the main problems with using a secret algorithm for encryption is that it is

difficult to determine if Eve has found-out the algorithm used, thus most encryption

methods use a key-based approach where an electronic key is applied to a well-

known algorithm. Another problem with using different algorithms for the encryp-

Same value

8 Security and Forensic Computing

tion is that it is often difficult to keep devising new algorithms and also to tell the re-

ceiving party that the text is being encrypted with the new algorithm. Thus, using

electronic keys, there are no problems with everyone having the encryp-

tion/decryption algorithm, because without the key it should be computationally

difficult to decrypt the message (Figure 3.4).

 The three main methods of encryption are (Figure 3.5):

- Symmetric key-based encryption. This involves the same key being applied to

the encrypted data, in order that the original data is recovered. Typical methods

are DES, 3DES, RC2, RC4, AES, and so on.

- Asymmetric key-based encryption. This involves using a different key to de-

crypt the encrypted data, in order that the original data is recovered. A typical

method is RSA, DSA and El Gamal.

- One-way hash functions. With this it is not possible to recover the original

source information, but the mapping between the value and the hashed value is

known. The one-way hash function is typically used in authentication applica-

tions, such as generating a hash value for a message, and will be covered in Unit

4. The two main methods are MD5 and SHA-1, and it is also used in password

hashing applications, where a password is hashed with a one-way function, and

the result is stored. This is the case in Windows and UNIX login, where the

password is stored as a hash value. Unfortunately, if the password is not a strong

one, the hash value is often prone to a dictionary-type attack, where an intruder

tries many different passwords and hashes them, and then compares it with the

stored one.

Bob

Eve

Communications

Channel
Standard

Encryption

Algorithm

Standard

Encryption

Algorithm

Hello

H&$d. H&$d.

Hello

Alice

Figure 3.4 Key-based encryption

 W.Buchanan 9

Author: Prof Bill

Buchanan

Symmetric encryption

Hello. Hja32,

Asymmetric encryption

Hello.

Hello. kG&$s Hello.

Hello. h65dfedfKKK=+1

One-way hash

Private-key:

RC2, RC4,

DES, 3DES,

AES

Public-key:

RSA, DSA

(factoring prime

numbers)

FIPS 186-2,

ElGamal

(Elliptic curve)

Hashing:

MD5, SHA-1Bob

Bob
Alice

Bob
Alice

Alice

Figure 3.5 Encryption methods

3.5.1 Computation difficulty

Every code is crackable and the measure of the security of a code is the amount of

time it takes a person not addressed in the code to break it. Unless there are weak-

nesses in the encryption algorithm, the normal way to break cipher text is where a

computer tries all the possible keys, until it finds a match. Thus a 1-bit code would

only have two keys; a 2-bit code would have four keys; and so on. Table 3.4 shows

the number of possible keys, as a function of the number of bits in the key. For ex-

ample it can be seen that a 64-bit code has 18400000000000000000 different keys.

Thus if one key is tested every 10 s then it would take 1.841014 seconds (5.111010

hours or 2.13108 days or 5834602 years). So, for example, if it takes 1 million years

for a person to crack the code, it can be considered safe. Unfortunately, from the

point of security of an encrypted message, the performance of computer systems in-

creases by the year. For example, if a computer takes 1 million years to crack a code,

then assuming an increase in computing power of a factor of two per year, it would

take 500000 years the next year. Then, Table 3.3 shows that after almost 20 years it

would take only 1 year to decrypt the same message. This is a worrying factor as en-

cryption algorithms which are used in the financial applications, which was one of

the first after the military to adopt encryption, are now over 30 years old2.

 The increasing power of computers is one factor in reducing the processing time;

another is the increasing usage of parallel processing, as data decryption is well suit-

2 DES is the standard encryption algorithm used in financial transactions and was first pub-

lished in 1977.

10 Security and Forensic Computing

ed to parallel processing as each processor element can be assigned a number of keys

to check the encrypted message. Each of them can then work independently of the

other3. Table 3.6 gives typical times, assuming a doubling of processing power each

year, for processor arrays of 1, 2, 4…4096 elements. It can thus be seen that with an

array of 4096 processing elements it takes only seven years before the code is de-

crypted within two years. Thus an organization which is serious about deciphering

messages is likely to have the resources to invest in large arrays of processors, or

networked computers. It is also likely that many governments have computer sys-

tems which have thousands of processors, operating in parallel.

Table 3.4 Number of keys related to the number of bits in the key

Code size Number of keys Code size Number of keys Code size Number of keys

1 2 12 4 096 52 4.5  1015

2 4 16 65 536 56 7.21  1016

3 8 20 1 048 576 60 1.15  1018

4 16 24 16 777 216 64 1.84  1019

5 32 28 2.68  108 68 2.95  1020

6 64 32 4.29  109 72 4.72  1021

7 128 36 6.87  1010 76 7.56  1022

8 256 40 1.1  1012 80 1.21  1024

9 512 44 1.76  1013 84 1.93  1025

10 1 024 48 2.81  1014 88 3.09  1026

Table 3.5 Time to decrypt a message assuming an increase in computing power

Year Time to decrypt (years) Year Time to decrypt (years)

0 1 million 10 977

1 500000 11 489

2 250000 12 245

3 125000 13 123

4 62500 14 62

5 31250 15 31

6 15625 16 16

7 7813 17 8

8 3907 18 4

9 1954 19 2

Table 3.6 Time to decrypt a message with increasing power and parallel processing

Processors Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

1 1000000 500000 250000 125000 62500 31250 15625 7813

2 500000 250000 125000 62500 31250 15625 7813 3907

4 250000 125000 62500 31250 15625 7813 3907 1954

8 125000 62500 31250 15625 7813 3907 1954 977

16 62500 31250 15625 7813 3907 1954 977 489

32 31250 15625 7813 3907 1954 977 489 245

64 15625 7813 3907 1954 977 489 245 123

128 7813 3907 1954 977 489 245 123 62

256 3906 1953 977 489 245 123 62 31

512 1953 977 489 245 123 62 31 16

1024 977 489 245 123 62 31 16 8

3 This differs from many applications in parallel processing which suffer from interpro-

cess(or) communication

 W.Buchanan 11

2048 488 244 122 61 31 16 8 4

4096 244 122 61 31 16 8 4 2

3.5.2 Cracking the code

A cryptosystem normally converts plaintext into ciphertext, using a key. There are

several methods that an intruder can use to crack a code, including:

 Exhaustive search. Where the intruder uses brute force to decrypt the ciphertext

and tries every possible key (Figure 3.6).

 Known plaintext attack. Where the intruder knows part of the ciphertext and the

corresponding plaintext. The known ciphertext and plaintext can then be used to

decrypt the rest of the ciphertext (Figure 3.7).

 Man-in-the-middle. Where the intruder is hidden between two parties and im-

personates each of them to the other (Figure 3.8).

 Chosen-ciphertext. Where the intruder sends a message to the target, this is then

encrypted with the target’s private-key and the intruder then analyses the en-

crypted message. For example, an intruder may send an e-mail to the encryption

file server and the intruder spies on the delivered message.

 Active attack. Where the intruder inserts or modifies messages (Figure 3.9).

 The replay system. Where the intruder takes a legitimate message and sends it

into the network at some future time (Figure 3.10).

 Cut-and-paste. Where the intruder mixes parts of two different encrypted mes-

sages and, sometimes, is able to create a new message. This message is likely to

make no sense, but may trick the receiver into doing something that helps the in-

truder.

 Time resetting. Some encryption schemes use the time of the computer to create

the key. Resetting this time or determining the time that the message was created

can give some useful information to the intruder.

 Time attack. This involves determining the amount of time that a user takes to

decrypt the message; from this the key can be found.

Hello. How are you?

Intruder

kG&$s &FDsaf *fd$

Exhaustive search.

Where the intruder uses

brute force to decrypt

the ciphertext and tries

every possible key.

kG&$s &FDsaf *fd$

Zhk& $31 004fX
000...000

kBb 95&$ $23z
000...001

Hello. How are you?
001...100

Bob

Eve

Alice

Figure 3.6 Exhaustive search

12 Security and Forensic Computing

Bob

Hello. How are you?

Intruder

kG&$s

Alice

kG&$s &FDsaf *fd$

Known plaintext attack.

Where the intruder knows

part of the ciphertext and

the corresponding plaintext.

The known ciphertext and

plaintext can then be used

to decrypt the rest of the

ciphertext.
The mapping is used

to crack the code

Eve

Figure 3.7 Known plaintext attack

Hello. How are you?

Intruder - MITM

zBtt9k$%ds&”!

Man-in-the-middle.

Where the intruder is

hidden between two

parties and

impersonates each of

them to the other.

Key1

Key2

kG&$s &FDsaf *fd$

Hello. How are you?

Goodbye. Farewell

Goodbye. Farewell

Alice

Bob

Eve

Figure 3.8 Man-in-the-middle

 W.Buchanan 13

Bob

Hello. How are you?

Intruder

Alice

kG&$s &FDsaf *fd$

The replay system.

Where the intruder

takes a legitimate

message and sends it

into the network at

some future time.

kG&$s &FDsaf *fd$

Eve

Figure 3.9 Replay attack

Bob

Hello. How are you?

Intruder

kG&$s &FDsaf *fd$

Active attack. Where the

intruder inserts or modifies

messages.

Cut and paste. Where the

intruder mixes parts of two

different encrypted messages

and, sometimes, is able to

create a new message. This

message is likely to make no

sense, but may trick the

receiver into doing something

that helps the intruder.

Fd534d kG&$s

kG&$s

Eve

Alice

Figure 3.10 Active attack

3.5.3 Stream encryption and block encryption

The encryption method can either be applied by selecting blocks of a data, and then

encrypting them, or it can operate on a data stream, where one bit at a time is en-

crypted (Figure 3.11). Typical block sizes are 128, 192 or 256 bits. Overall stream

encryption is much faster, and can typically be applied in real-time applications. For

example, stream-based encryption is used with wireless systems, where an infinite

key is created from the wireless key. This is then exclusive-OR-ed with the data

stream, to produce the ciperstream. The main methods are (Figure 3.11 and Figure

3.12):

 Stream encryption: RC4 (one of the fastest streaming algorithms around).

 Block encryption: RC2 (40-bit key size), RC5 (variable block size), IDEA, DES,

3DES, AES (Rijndael), Blowfish and Twofish.

3DES:  Web link: http://buchananweb.co.uk/security07.aspx

http://buchananweb.co.uk/security07.aspx

14 Security and Forensic Computing

RC2:  Web link: http://buchananweb.co.uk/security06.aspx

AES:  Web link: http://buchananweb.co.uk/security15.aspx

RSA:  Web link: http://buchananweb.co.uk/security08.aspx

Plaintext

Message

Block

(eg 128 bits)

Message

Block

Message

Block

Cipher

block

Cipher

block

Cipher

block

Transmitted cipher block

Figure 3.11 Block coding

The most widely used private-key encryption (symmetric) algorithms are:

 RC2 (40-bit key size, 64-bit blocks.

 RC4 (stream cipher) – used in SSL and WEP.

 RC5 (variable key size, 32, 64 or 128 bit block sizes).

 AES (128, 192 or 256 bit key size, 128 bit block size).

 DES (56 bit key size, 64 bit block size).

 3DES (168 bit key size, 64 bit block size).

An example of a stream conversion is:

Data stream: 0101110101010111

Pseduo-infinite key: 1001100000111010

Result: 1100010101101101

where the receive will then generate the same infinite key, and simply X-OR it with

the received stream to recover the data stream. A weakness of the system is obvious-

ly in the way that the pseduo-infinite key, which is typically generated from a pass

phrase (which limits the actual range of keys). To overcome the same pseduo-infinite

key being used for different communications, an initialization vector (IV) is normally

used (the random seed). This can then be incremented each for each data frame sent,

and will thus result in a different key for each transmission. Unfortunately the IV

value has a limited range, and will enventually roll-over to the same value, after-

which an intruder can use a statisical analysis technique to crack the code.

See: http://ceres.napier.ac.uk/staff/bill/wireless_security/wireless_security.htm

http://buchananweb.co.uk/security15.aspx

 W.Buchanan 15

Plaintext

+

Secret

key

Pseudo-

infinite

key generate

Random

seed

0101...

110101 ...

1000 ...

Figure 3.12 Stream coding

3.6 Brute-force analysis
It is important to understand how well cipher text will cope with a brute force attack,

where an intruder tries all the possible keys. As an example, let’s try a 64-bit encryp-

tion key which gives us: 1.841019 combinations (264). If we now assume that we have

a fast processor that tries one key every billionth of second (1GHz clock), then the

average4 time to crack the code will be:

seconds 000,000,000,921011084.1 919  

averageT 5

It will thus take approximately 2.5 million hours (150 million minutes or 285 years) to

crack the code, which is likely to be strong enough in most cases. Unfortunately as

we have seen, the computing power often increases by the year, so if we assume a

doubling of computing power, then:

Date Hours Days Years

0 2,500,000 104,167 285

+1 1,250,000 52,083 143

+2 625,000 26,042 71

+3 312,500 13,021 36

+4 156,250 6,510 18

+5 78,125 3,255 9

+6 39,063 1,628 4

+7 19,532 814 2

4 The average time will be half of the maximum time
5 9,223,372,036 seconds to be more precise

16 Security and Forensic Computing

+8 9,766 407 1

+9 4,883 203 1

+10 2,442 102 0.3

+11 1,221 51 0.1

+12 611 25 0.1

+13 306 13 0

+14 153 6 0

+15 77 3 0

+16 39 2 0

+17 20 1 0

we can see that it now only takes 17 years to crack the code in a single day! If we

then apply parallel processing, the time to crack reduces again. In the following an

array of 22 (4 processing elements), 44 (16 processing elements), and so on, are

used to determine the average time taken to crack the code. If, thus, it currently takes

2,500,000 minutes to crack the code, it can be seen that by Year 6, it takes less than

one minute to crack the code, with a 256256 processing matrix.

Processing

Elements

Year 0

(minutes)

Year 1

(min)

Year 2

(min)

Year 3

(min)

Year 4

(min)

Year 5

(min)

Year 6

(min)

Year 7

(min)

1 2500000 1250000 625000 312500 156250 78125 39062.5 19531.3

4 625000 312500 156250 78125 39062.5 19531.3 9765.7 4882.9

16 156250 78125 39062.5 19531.3 9765.7 4882.9 2441.5 1220.8

64 39063 19531.5 9765.8 4882.9 2441.5 1220.8 610.4 305.2

256 9766 4883 2441.5 1220.8 610.4 305.2 152.6 76.3

1024 2441 1220.5 610.3 305.2 152.6 76.3 38.2 19.1

4096 610 305 152.5 76.3 38.2 19.1 9.6 4.8

16384 153 76.5 38.3 19.2 9.6 4.8 2.4 1.2

65536 38 19 9.5 4.8 2.4 1.2 0.6 0.3

The use of parallel processing is now well-known in the industry, and the Electronic

Frontier Foundation (EFF) set out to prove that DES was weak, and created a 56-bit

DES crack which had an array of 29 circuits of 64 chips (1856 elements), and pro-

cessed 90,000,000 keys per seconds. It, in 1998, eventually cracked the code within 2.5

days. A more recent machine is the COPACOBANA (Cost-Optimized Parallel COde

Breaker) which costs less than $10,000, and can crack a 64-bit DES code in less than

nine days.

 The ultimate in distributed applications is to use unused processor cycles of ma-

chines connected to the Internet. For this applications such as distributed.net allow

the analysis of a key space when the screen saver is on (Figure 3.13). It has since used

the method to crack a number of challenges, such as in 1997 with a 56-bit RC5 En-

cryption Challenge. It was cracked in 250 days, and has since moved on, in 2002, to

crack 64-bit RC5 Encryption Challenge in 1,757 days (with 83% of the key space test-

ed). The current challenge involves a 72-bit key.

 Along with increasing power of computers, and parallel processing, another

method of improving the performance of brute force analysis is to use supercomput-

ers. Two of the most powerful machines in the world are:

 W.Buchanan 17

 BlueGene/L – eServer Blue Gene Solution. DOE/NNSA/LLNL, IBM Department

of Energy's (DOE) National Nuclear Security Administration's (NNSA) which has

131,072 processors, and gives a throughout of 367,000 Gigaflop= 367,000,000

Mflops (which is 1,835,000 times more powerful than a desktop). The University

of Edinburgh has just deployed their new BlueGene and runs at 60,000 Gigaflops.

 Red Storm - Sandia/ Cray Red Storm. NNSA/Sandia National Laboratory United

States. It has a 2.4 GHz dual core from Cray Inc and has 26,544 processors with an

operating throughput of 127,000 Gflops.

An encryption algorithm which is cracked in a million minutes on a standard PC,

could BlueGene less than a minute to crack.

Figure 3.13 Distributed.net

3.7 Public-key, private-key and session keys

The encryption process can either use a public key or a secret key (Figure 3.4). With a

secret key, the key is only known to the two communicating parties (symmetric key-

based encryption). This key can be fixed or can be passed from the two parties over a

secure communications link (perhaps over the postal network or a leased line). The

two popular private key techniques are DES (Data Encryption Standard) and IDEA

(International Data Encryption Algorithm).

 In public-key encryption, each entity has both a public and a private key (asym-

metric key-based encryption). The two entities then communicate using each other’s

public keys. Normally, in a public-key system, each user uses a public enciphering

transformation which is widely known and a private deciphering transform which is

known only to that user. The private transformation is described by a private key,

and the public transformation by a public key derived from the private key by a one-

way transformation. The RSA (after its inventors Rivest, Shamir and Adleman) tech-

nique is one of the most popular public-key techniques and is based on the difficulty

of factoring large numbers.

 Another important factor is the time relavence of the generated keys (whether

symmetric or asymmetric keys), where the keys could be fixed for a range of connec-

18 Security and Forensic Computing

tions, and have some form of key regeneration after a certain number of connections,

or for a certain time limit. They can also be sessional, where the keys are defined for

each session. The advantage with sessional keys is that they typically do not have to

be as long as non-time based keys, as the session typically only occurs for a short

time, after which new keys are regenerated. Thus with brute force the intruder might

only be able to get the details of a single session, by which time it is probably too late

to gain and useful information from it. In wireless communications, the WEP encryp-

tion standard uses a fixed key, based on a pass phrase, and is used by all the nodes

on the network. Thus, once the key has been cracked it can be used to decrypt all the

communications for the network. An improvement on this is to use TKIP (which is

part of WPA), which uses a session key for each connection, and it is thus much more

difficult to crack. Both these techniques use the RC4 encryption method, which uses

stream encryption. Newer systems are likely to be based around WPA-2 which uses a

block encryption standard (AES).

3.8 Adding salt
A major problem in encryption is playback where an intruder can copy an encrypted

message and play it back, as the same plain text will always give the same cipher

text. The solution is to add salt to the encryption key, as that it changes its operation

from block-to-block (for block encryption) or data frame-to-data frame (for stream

encryption). The Electronic Code Book (ECB) method is weak, as the same cipher text

appears for the same blocks. For example:

Hello -> 5ghd%43f=

Hello -> 5ghd%43f=

If the intruder knew that the plaintext was “Hello”, they would be able to play back

this message. This solution to this is to add salt. This is typically done with an IV (Ini-

tialisation Vector) which must be the same on both sides. In WEP, the IV is

incremented for each data frame, so that the cipher text changes. As can be seen in

Figure 3.15, in blocks of the same data will be encrypted in the same way. An im-

porvement is to use Cipher Block Chaining (CBC). This method uses the IV for the

first block, and then the results from the previous block to encrypt the current block.

 W.Buchanan 19

Bob Block 1
 DES/3DES – 64 bits

 RC2 – 64 bits

 AES/Rijndael – 128

bits)

Block 2
 DES/3DES – 64 bits

 RC2 – 64 bits

 AES/Rijndael – 128

bits)

Encrypted

Block

Encrypted

Block

Electronic Code Book (ECB)

method. This is weak, as the

same cipher text appears for

the same blocks.

Hello à 5ghd%43f=

Hello à 5ghd%43f=

Block 1
 DES/3DES – 64 bits

 RC2 – 64 bits

 AES/Rijndael – 128

bits)

Block 2
 DES/3DES – 64 bits

 RC2 – 64 bits

 AES/Rijndael – 128

bits)

Encrypted

Block

Encrypted

Block

Adding salt. This is typically

done with an IV (Initialisation

Vector) which must be the

same on both sides. In WEP,

the IV is incremented for each

data frame, so that the cipher

text changes.

IV

Figure 3.14 ECB and adding salt

Bob

Block 1 Block 2

Encrypted

Block

Encrypted

Block

Cipher Block Chaining

(CBC). This method uses the

IV for the first block, and then

the results from the previous

block to encrypt the current

block.
+IV +

Figure 3.15 ECB and CBC

3.9 Private-key encryption

Private-key (or secret-key) encryption techniques use a secret key which is only

known by the two communicating parties, as illustrated in Figure 3.16. This key can

generated by a phase-phase, or can be passed from the two parties over a secure

communications link. The most popular private-key techniques include:

20 Security and Forensic Computing

 DES. DES (Data Encryption Standard) is a block cipher scheme which operates

on 64-bit block sizes. The private key has only 56 useful bits, as eight of its bits

are used for parity (which gives 256 or 1017 possible keys). DES uses a complex se-

ries of permutations and substitutions, the result of these operations is XOR’ed

with the input. This is then repeated 16 times using a different order of the key

bits each time. DES is a strong code and has never been broken, although several

high-powered computers are now available which, using brute force, can crack

the code. A possible solution is 3DES (or triple DES) which uses DES three times

in a row. First to encrypt, next to decrypt and finally to encrypt. This system al-

lows a key-length of more than 128 bits. The technique uses two keys and three

executions of the DES algorithm. A key, K1, is used in the first execution, then K2

is used and finally K1 is used again. These two keys give an effective key length of

112 bits, that is 2 64 key bits minus 16 parity bits. The Triple DES process is illus-

trated in Figure 3.17.

 RC4. RC4 is a stream cipher designed by RSA Data Security, Inc and was a secret

until information on it appeared on the Internet. The secure socket layer (SSL)

protocol and wireless communications (IEEE 802.11a/b/g) use RC4. It uses a

pseudo random number generator, where the output of the generator is XOR’ed

with the plaintext. It is a fast algorithm and can use any key-length. Unfortunate-

ly the same key cannot be used twice. Recently a 40-bit key version was broken in

eight days without special computer power.

 AES/Rijndael. AES (Advanced Encryption Standard) is a new standard for en-

cryption, and uses 128, 192 or 256 bits. It was selected by NIST in 2001 (after a

five year standardisation process). The name Rijndael comes from its Belgium

creators: Joan Daemen and Vincent Rijmen. The future of wireless systems (WPA-

2) is likely to be based around AES (while WPA uses TKIP which is a session key

method which is based around stream encryption using RC4).

 IDEA. IDEA (International Data Encryption Algorithm) is similar to DES. It op-

erates on 64-bit blocks of plaintext, using a 128-bit key, and has over 17 rounds

with a complicated mangler function. During decryption this function does not

have to be reversed and can simply be applied in the same way as during encryp-

tion (this also occurs with DES). IDEA uses a different key expansion for

encryption and decryption, but every other part of the process is identical. The

same keys are used in DES decryption, but in the reverse order. The key is de-

vised in eight 16-bit blocks; the first six are used in the first round of encryption

the last two are used in the second run. It is free for use in non-commercial ver-

sion and appears to be a strong cipher.

 RC5. RC5 is a fast block cipher designed by Rivest for RSA Data Security. It has a

parameterized algorithm with a variable block size (32, 64 or 128 bits), a variable

key size (0 to 2048 bits) and a variable number of rounds (0 to 255). It has a heavy

use of data dependent rotations, and the mixture of different operations, which

assures that RC5 is secure.

The major advantage that private-key encryption has over public-key is that it is typ-

ically much faster to decrypt, and can thus be used where a fast conversion is

required, such as in real-time encryption.

 W.Buchanan 21

 Web link: http://buchananweb.co.uk/security07.aspx [3DES]

 Web link: http://buchananweb.co.uk/security06.aspx [RC2]

 Web link: http://buchananweb.co.uk/security15.aspx [AES/Rijndael]

Private key uses the same

key for encryption and

decryption.

Communications

ChannelEncryption Decryption

H&$d. H&$d.

Hello

Bob Alice

Eve

Hello

Figure 3.16 Private key encryption/decryption process

DES

algorithm

DES

algorithm

DES

algorithm

K1 K2 K1

Plaintext Ciphertext

Figure 3.17 Triple DES process

3.10 Encryption classes
The .NET environment provides a number of cryptography classes. A good method

is to use a code wrapper, which provides a simple method of accessing these classes

[1]. It provides encryption algorithms such as DES, 3DES and BlowFish, and also

hash algorithms such as MD5 and SHA (which will be covered in Chapter 4). The

following is a simple example using the 3DES algorithm:

using System;
using XCrypt;
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp
namespace encryption
{
 class MyEncryption

http://buchananweb.co.uk/security07.aspx
http://buchananweb.co.uk/security06.aspx
http://buchananweb.co.uk/security15.aspx

22 Security and Forensic Computing

 {
 static void Main(string[] args)
 {
 XCryptEngine xe = new XCryptEngine();
 xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES);
// Other algorithms are:
// xe.InitializeEngine(XCryptEngine.AlgorithmType.BlowFish);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.Twofish);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.DES);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.MD5);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.RC2);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.Rijndael);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA256);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA384);
// xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA512);

 xe.Key = "MyKey"; // Define the public key
 Console.WriteLine("Enter string to encrypt:");
 string inText = Console.ReadLine();
 string encText = xe.Encrypt(inText);
 string decText = xe.Decrypt(encText);
 Console.WriteLine("Input: {0}\r\nEncr: {1}\r\nDecr: {2}",
 inText,encText,decText);
 Console.ReadLine();
 }
 }
}

A sample run with 3DES gives:

Enter string to encrypt:
test
Input: test
Encr: uVZLHJ3Wr8s=
Decr: test

By changing the method to SHA-1 (SHA) gives:

Enter string to hash: test
Input: test
Hash: qUqP5cyxm6YcTAhz05Hph5gvu9M=

The code for this simple example is available at:

http://buchananweb.co.uk/encryption.zip

3.10.1 Key interchange

The major problem of private-key encryption is how to pass the key between Bob

and Alice, without Eve listening (Figure 3.18). This problem was solved by Whitfield

Diffie in 1975, who created the Diffie-Hellman method. With this method, Bob and

Alice generate two random values, and perform some calculations (Figure 3.16 and

Figure 3.19), and pass the result of the calculations to each other (Figure 3.20). Once

these values have been received at either end, Bob and Alice will have the same se-

cret key, which Eve cannot compute (without extensive computation). Diffie-

Hellman is used in many applications, such as in VPNs (Virtual Private Networks),

SSH, and secure FTP. The following shows a trace of a connection to a secure FTP

site:

STATUS:> Initializing SFTP21 module...
STATUS:> Resolving host name mysite.com ...

A text string is

used to define the

key as it is easier

to remember over

a binary or hexa-

decimal define

key.

http://buchananweb.co.uk/encryption.zip

 W.Buchanan 23

STATUS:> Host name mysite.com resolved: ip = 1.2.3.4.
STATUS:> Connecting to SFTP server ftp1.napier.ac.uk:22 (ip = 1.2.3.4)
 Key Method: Diffie-Hellman-group1-SHA1
 Host Key Algorithm: SSH-RSA
 Session Cipher: 192 bit TripleDES-cbc
 Session MAC: HMAC-MD5
 Session Compressor/Decompressor: ZLIB
STATUS:> Getting working directory...
STATUS:> Home directory: /home/test

Where it can be seen that in this secure FTP transaction, the encryption being used is

3DES (TripleDES), the message authentication method is HMAC-MD5 (see Section

4.7) and the key exchange is Diffie-Hellman. Overall Diffie-Hellman has three

groups: Group 1, Group 3 or Group 5. These determine the size of the prime number

bases which are used in the key exchange, where Group 5 is more secure than Group

2, which is more secure than Group 1.

 Web link: http://buchananweb.co.uk/flash_diffie.html

 Web link: http://buchananweb.co.uk/security02.aspx [Diffie-Hellman example]

Private key uses the same

key for encryption and

decryption … how does

Bob send the key to Alice?

Communications

ChannelEncryption Decryption

H&$d. H&$d.

Hello

Bob Alice

Eve

Hello

How do Bob and Alice send

their private (secret) key

without Eve getting it?

Figure 3.18 Private key encryption

http://buchananweb.co.uk/security02.aspx

24 Security and Forensic Computing

One of the most widely

method for creating a

secret key which is the

same for Bob and Alice

Communications

ChannelEncryption Decryption

H&$d. H&$d.

Hello

Bob Alice

Eve

Hello

How do Bob and Alice send

their private (secret) key

without Eve getting it?

This problem was solved by

Whitfield Diffie, who created

the Diffie-Hellman algorithm,

which is the most widely

used method for passing

secret keys

Figure 3.19 Diffie-Helman method

Bob Alice

Eve

Untrusted

network

4. A and B

values

exchanged

1. Both nodes agree on two values (G and n)

2. Generate a random value (x) 2. Generate a random value (y)

3. A = G
x
 mod n 3. B = G

y
 mod n

5. K1 = B
x
 mod n 5. K2 = A

y
 mod n

K1 and K2 should be the same and are the

secret key

Figure 3.20 Diffie-Hellman process (see http://buchananweb.co.uk/diffie.aspx)

 W.Buchanan 25

Bob Alice

Eve

Untrusted

network

4. A and B

values

exchanged

1. Both nodes agree on two values (7 and 4)

2. Generate a random value (3) 2. Generate a random value (4)

3. A = 7
3
 mod 4 = 3 3. B = 7

4
 mod 4 = 1

5. K1 = 1
7
 mod 4 = 1 5. K2 = 3

4
 mod 4 = 1

K1 and K2 should be the same and are the

secret key

Figure 3.21 Example Diffie-Hellman process (see http://buchananweb.co.uk/diffie.aspx)

A simple .NET program to calculate small values of G and n is:

using System;
namespace diffie
{
 class Class1
 {
 public static Random r= new Random();

 static void Main(string[] args)
 {
 long x,y,A,B,n,G,K1, K2;

 G= 20;
 n= 99;

 x = random(10)+1;
 y = random((int)x);

 double val1= Math.Pow((double)G,(double)x);
 double val2= Math.Pow((double)G,(double)y);

 Math.DivRem((long)val1,n,out A);
 Math.DivRem((long)val2,n,out B);

 Math.DivRem((long)Math.Pow((double)B,(double)x),n,out K1);
 Math.DivRem((long)Math.Pow((double)A,(double)y),n,out K2);

 Console.WriteLine("x is {0} and A is {1}",x,A);
 Console.WriteLine("y is {0} and B is {1}",y,B);

 Console.WriteLine("K1 is: " + K1);
 Console.WriteLine("K2 is: " + K2);
 Console.ReadLine();
 }
 public static int random(int max)

26 Security and Forensic Computing

 {
 try
 {
 return(r.Next(max));
 }
 catch {};
 return(0);
 }
 }
}

which gives a sample run of:

x is 6 and A is 64
y is 3 and B is 80
K1 is: 91
K2 is: 91

It can be seen that the values of G and n (20 and 99, respectively) are relevantly small

as larger values will typically overflow the calculations, as the Math.DivRem() meth-

od can only support long integers, whereas many more bits are required to support

the large values involved, especially with the A and B to the power of x and y, re-

spectively. A run of values of x and y between 1 and 3 shows that the values of K1

and K2 are the same for these values of G and n (the code for this is in Tutorial

3.13.5):

x y A B K1 K2
1 1 20 20 20 20
1 2 20 4 4 4
1 3 20 80 80 80
2 1 4 20 4 4
2 2 4 4 16 16
2 3 4 80 64 64
3 1 80 20 80 80
3 2 80 4 64 64
3 3 80 80 71 71

 Web link: http://buchananweb.co.uk/security02.aspx [Diffie-Hellman demo]

3.11 Public-key encryption

Public-key encryption uses two keys: a public one and a private one (Figure 3.22).

These are generated from extremely large prime numbers, as a value which is the

product of two large prime numbers is extremely difficult to factorize. The two keys

are generated, and the public key is passed to the other side, who will then encrypt

data destined for this entity using this public key. The only key which can decrypt it

is the secret, private key. A well-known algorithm is RSA, and can be used to create

extremely large keys. Its stages are:

1. Select two large prime numbers, a and b (each will be roughly 256 bits long).

The factors a and b remain secret and n is the result of multiplying them togeth-

er. Each of the prime numbers is of the order of 10100.

2. Next, the public-key is chosen. To do this a number e is chosen so that e and (a-

1)(b-1) are relatively prime. Two numbers are relatively prime if they have no

http://buchananweb.co.uk/security02.aspx

 W.Buchanan 27

common factor greater than 1. The public-key is then <e,n> and results in a key

which is 512 bits long.

3. Next the private key for decryption, d, is computed so that:

 d=e–1 mod [(a-1)(b-1)]

4. The encryption process to ciphertext, c, is then defined by:

 c=me mod n

5. The message, m, is then decrypted with:

 m=cd mod n

Communications

ChannelEncryption Decryption

Bob
Alice

Eve

Public key

Private key

Public key

Private key

Hello

H&$d.

Hello

B

C

D

A

A. Bob creates the message.

B. Bob encrypts with Alice’s public key

and sends Alice the encrypted message

C. Alice decrypts with her private key

D. Alice receives the message

Figure 3.22 Public-key encryption/decryption process

 Web link: http://buchananweb.co.uk/security18.aspx [Demo of RSA key gen.]

3.11.1 XML keys

The following is some .NET code to generate 1024-bit public and private keys:

 System.Security.Cryptography.RSACryptoServiceProvider RSAProvider;
 RSAProvider = new System.Security.Cryptography.RSACryptoServiceProvider(1024);
 publicAndPrivateKeys = RSAProvider.ToXmlString(true);
 justPublicKey = RSAProvider.ToXmlString(false);
 StreamWriter fs = new StreamWriter("c:\\public.xml");
 fs.Write(justPublicKey);
 fs.Close();
 fs = new StreamWriter("c:\\private.xml");
 fs.Write(publicAndPrivateKeys);
 fs.Close();

http://buchananweb.co.uk/security18.aspx

28 Security and Forensic Computing

It converts them in an XML format, such as given in Figure 3.21 (which contains both

the private and public key). In this case, the public key is:

<RSAKeyValue>

<Modu-

lus>1NtbP2f+I/3AiwKd+QeHhhsnlTkfufLKS4muFruJ8CwIRFhsyo9yoCIVydb6v0VdDtfg3

F10iTGQw6waXy4QQ2LB4utIqASRumqU2cVNBLYkB/p7eHByTm3GAhxvyTOGWPidcbVCrIrYor

9ck9M79syetG7ZEpHd8hy4Qm6BuP8=

</Modulus>

 <Exponent>AQAB</Exponent>

</RSAKeyValue>

Figure 3.23 XML-based private key

The code to then read the keys is:

 XmlTextReader xtr = new XmlTextReader("c:\\private.xml");
 publicAndPrivateKeys=""; // reset keys
 justPublicKey="";
 while (xtr.Read())
 {
 publicAndPrivateKeys += xtr.ReadOuterXml();
 }
 xtr.Close();
 xtr = new XmlTextReader("c:\\public.xml");
 while (xtr.Read())
 {
 justPublicKey += xtr.ReadOuterXml();
 }
 xtr.Close();

and then to encrypt a message (txt) with the public key:

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
string txt= tbTxtEncrypt.Text;
rsa.FromXmlString(justPublicKey);
byte[] plainbytes = System.Text.Encoding.UTF8.GetBytes(txt);
byte[] cipherbytes = rsa.Encrypt(plainbytes,false);
this.tbTxtEncrypted.Text=Convert.ToBase64String(cipherbytes);

 W.Buchanan 29

and then to decrypt with the private key:

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
string txt=tbTxtEncrypted.Text;
rsa.FromXmlString(publicAndPrivateKeys);
byte[] cipherbytes = Convert.FromBase64String(txt);
byte[] plainbytes = rsa.Decrypt(cipherbytes,false);
System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
this.tbTxtDecrypt.Text = enc.GetString(plainbytes);

where tbTxtEncryted is the text box for the encrypted text, and tbTxtEncrypt is

the text box for the text to be encrypted text. Using these keys, a message of “hello”

becomes:

tPGI0dMBhQdwMNdn2hf/r1WkYsshK4rmfoshIdnWsiknW4ZLOtmC

gx3tuhoY3SNNP/z4OziigHUEcyp7POyYEPrmAUbC5XZmJZQcHKG+

3m2W1woAB09H4GxXK2P4q2BR61gekHoZOjyEMu2Bk7lCtiWYzPv9

gnubF7JWvfEuYmU=

Public-key encryption is an excellent method of keeping data secure, but it is often

too slow for real-time communications. Also, we have the problem of distributing the

public key to the sender. This problem is solved in the next unit by the use of digital

certificates.

 Web link: http://buchananweb.co.uk/security08.aspx [RSA for ASP.NET]

 Web link: http://buchananweb.co.uk/security16.aspx {RSA for Windows]

3.12 One-way hashing

The concept of one-way hashing will be discussed in more details in the next chapter.

One-way hashes are used for digital fingerprints and for secure password storage.

Typical methods are NT hash, MD4, MD5, and SHA-1, and are used to convert

plaintext into a hash value (Figure 3.24). It has applications in storing passwords,

such as in Unix/Windows and on Cisco devices (Figure 3.25). A weakness of one-way

hashing is that the same piece of plaintext will result in the same ciphertext (unless

some salt is applied). Thus it is possible for an intruder to generate a list of hash val-

ues for a standard dictionary (Figure 3.26), and possibly determine the plaintext

which makes the one-way hash. A major factor with hash signatures is:

 Collision. This is where another match is found, no matter the similarity of the

original message. This can be defined as a Collision attack.

 Similar context. This is where part of the message has some significance to the

original, and generates the same hash signature. The can be defined as a Pre-

image attack.

 Full context. This is where an alternative message is created with the same hash

signature, and has a direct relation to the original message. This is an extension to

a Pre-image attack.

http://buchananweb.co.uk/security08.aspx
http://buchananweb.co.uk/security16.aspx

30 Security and Forensic Computing

In 2006, for example, it was shown that MD5 can produce a collision within one mi-

nute, whereas it was 18 hours for SHA-1.

 Web link: http://buchananweb.co.uk/security03.aspx [MD5/SHA-1]

 Web link: http://buchananweb.co.uk/security03a.aspx [MD5/SHA-1]

 Web link: http://buchananweb.co.uk/security03b.aspx [MD5/SHA-1 with salt]

Bob

Hashing

algorithm

H&$d.

Hello

Hash cannot be

reverse with an

inverse algorithm

Bob

text
Hash

fa1bfa14fa13fa12fa10fa1ffa14fa12

Hash value

Eve

Eve cannot guess

the password from

the hash

Figure 3.24 One-way hashing

Bob

mypass NT hash

(MD4)
fa1bfa14fa13fa12fa10fa1ffa14fa12

NT-password

hash for Windows

NT, XP and Vista

Windows login/

authentication

Bob

mypass

Cisco password

storage (MD5)

config t
(config)# enable secret test

Current configuration : 542 bytes
!
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Router
!
enable secret 5 1/Nwk$knsEQYxZVenGjWOGj/TGk0

MD5 encoded

password

Figure 3.25 Application of one-way hashing

http://buchananweb.co.uk/security03.aspx
http://buchananweb.co.uk/security03a.aspx

 W.Buchanan 31

Bob

mypass NT hash

(MD4)
fa1bfa14fa13fa12fa10fa1ffa14fa12

NT-password

hash for Windows

NT, XP and Vista

Windows login/

authentication

mypast effahd13fa12fa10fgffa1ffa14fa144

mypass fa1bfa14fa13fa12fa10fa1ffa14fa12

mypose ff12189043210954defff0123444512d

test1 aabbfce023215546dfeddd0101001cd

Hashing suffers from dictionary attacks

where the signatures of well know words are

stored in a table, and the intruders does a

lookup on this

Figure 3.26 Application of one-way hashing

3.13 Key entropy
Encryption key length is only one of the factors that can give a pointer to the security

of the encryption process. Unfortunately most encryption processes do not use the

full range of keys, as the encryption key itself is typically generated using an ASCII

password. For example in wireless systems typically use a pass phase to generate the

encryption key. Thus for 64-bit encryption, only five alphanumeric characters (40-

bits) are used and 13 alphanumeric characters (104 bits) are used for 128-bits encryp-

tion6. These characters are typically defined from well-know words and phases such

as:

Nap1

Whereas 128-bit encryption could use:

NapierStaff1

Thus, this approach typically reduces the number of useable keys, as the keys them-

selves will be generated from dictionaries, such as:

About

Apple

Aardvark

6 In wireless, a 64-bit encryption key is actually only a 40 bit key, as 24 bits is used as an ini-

tialisation vector. The same goes for a 128-bit key, where the actual key is only 104 bits.

32 Security and Forensic Computing

and keys generated from strange pass phases such as:

xyRg54d

io2Fddse

will not be common (and could maybe be checked if the standard dictionary pass

phases did not yield a result.

 Entropy measures the amount of unpredictability, and in encryption it relates to

the degree of uncertainty of the encryption process. If all the keys in a 128-bit key

were equally likely, then the entropy of the keys would be 128 bits. Unfortunately, do

to the problems of generating keys through pass phrases the entropy of standard

English can be less than 1.3 bits per character, and it is typically passwords at less

than 4 bits per character. Thus for a 128-bit encryption key in wireless, and using

standard English gives a maximum entropy of only 16.9 bits (1.3 times 13), which is

equivalent, almost to a 17-bit encryption key length. So rather than having

202,82,409,603,651,670,423,947,251,286,016 (2104) possible keys, there is only 131,072

(217) keys.

 As an example, let’s say an organisation uses a 40-bit encryption key, and that the

organisation has the following possible phases:

Napier, napier, napier1, Napier1, napierstaff, Napierstaff, napierSoc, na-

pierSoC, SoC, Computing, DCS, dcs, NapierAir, napierAir, napierair,

Aironet, MyAironet, SOCAironet, NapierUniversity, napieruniversity, Na-

pierUni

which gives 20 different phases, thus the entropy is equal to:

 

 

 
 

3.4

2log

20log

20log

log)(

10

10

2

2







 NbitsEntropy

Thus the entropy of the 40-bit code is only 4.3 bits.

 Unfortunately many password systems and operating systems such as Microsoft

Windows base their encryption keys on pass-phases, where the private key is pro-

tected by a password. This is a major problem, as a strong encryption key can be

used, but the password which protects it is open to a dictionary attack, and that the

overall entropy is low.

3.14 File encryption
See on-line lecture

3.15 Tutorial

 W.Buchanan 33

3.14.1 How many keys, in total, are used in the public-key system:

 (a) 1 (b) 3

 (c) 2 (d) 4

3.14.2 A typical public-key system is:

 (a) IDE (b) IDA

 (c) PGP (d) IDEA

3.14.3 How many keys, in total, are used in the private-key system:

 (a) 1 (b) 3

 (c) 2 (d) 4

3.14.4 A typical private-key system is:

 (a) IDE (b) IDA

 (c) PGP (d) IDEA

3.14.5 How many possible keys are there with a 16-bit key:

 (a) 16 (b) 65,536

 (c) 256 (d) 4,294,967,296

3.14.6 How many possible keys are there with a 32-bit key:

 (a) 32 (b) 1,048,576

 (c) 1024 (d) 4,294,967,296

3.14.7 If it takes 10ns (10×10-9 s) to test a key, determine the amount of time it

would take, on average, to decrypt a message with a 32-bit key:

 (a) 21.48 seconds (b) 43 seconds

 (c) 21.48 minutes (d) 43 minutes

3.14.8 Which key does the recipient use to decrypt the main message:

 (a) Recipient’s public key (b) Recipient’s private key

 (c) Sender’s public key (d) Sender’s private key

3.14.9 Which key does the recipient use to authenticate the sender:

 (a) Recipient’s public key (b) Recipient’s private key

 (c) Sender’s public key (d) Sender’s private key

3.14.10 What bitwise operator is used in encryption, as it always preserves the con-

tents of the in-formation:

 (a) Exclusive-OR’ed (b) AND

 (c) NOR (d) OR

3.14.11 What happens when a bit-stream is Exclusive-OR’ed by the same value,

twice:

 (a) Bit-stream becomes all 0’s (b) Bit-stream becomes all 1’s

 (c) Same bit-stream results (d) Impossible to predict

34 Security and Forensic Computing

3.14.12 If it takes 100 days to crack an encrypted message, and assuming that com-

puting speed increases by 100% each year, determine how long it will take

to crack the message after two years:

 (a) 25 days (b) 44.44... days

 (c) 50 days (d) 100 days

3.14.13 If it takes 100 days to crack an encrypted message, and assuming that com-

puting speed increases by 50% each year, determine how long it will take to

crack the message after two years:

 ` (a) 25 days (b) 44.44... days

 (c) 50 days (d) 100 days

3.14.14 If there are only 1024 different passwords for a 64-bit encryption key, what

is the key entropy [Hint: Key Entropy = log2 (X) = log10(X)/ log10(2)]

 (a) 1024 bits (b) 10 bits

 (c) 64 bits (d) 18,446,744,073,709,551,616 bits

3.14.15 If there are only 4000 different passwords for a 64-bit encryption key, what

is the key entropy:

 (a) 64 bits (b) 11 bits

 (c) 11.97 bits (d) 12.2 bits

3.14.16 Using the following link for RSA encryption:

 http://buchananweb.co.uk/security18.aspx

 Enter a value of p=11, q=3. Prove that n becomes 33, PHI is 20, and e could

be 9, 13, 17, and so on. Keep pressing the [e,n, PHI] button to regenerate a

new value of e. Why does n and PHI stay the same but e change?

3.14.17 Using the following link for Diffie-Hellman:

 http://buchananweb.co.uk/security02.aspx

 Enter a value of G=40, N=10, Bob X=7 and Alice Y=10, and prove that the re-

sultant key are the same.

3.14.18 Using the following link for Diffie-Hellman:

 http://buchananweb.co.uk/security02.aspx

 Determine the shared keys for the following (the first one has already been

completed):

 G n Bob(x) Alice(y) Shared-key

 15 58 6 7 57

 16 58 7 5

 8 52 10 11

http://buchananweb.co.uk/security18.aspx

 W.Buchanan 35

3.14.19 Explain why public-key methods tend to be more secure than private-key

methods. The discussion should include:

• Ease of changing the key.

• Ease of distribution.

• Crackability.

• etc.

3.14.20 Show that it will take 5849 years to search all the keys for a 64-bit encryp-

tion key. Assume it takes 10ns (10×10-9 s) to test a key. How might this time

be drastically reduced?

3.14.21 If it currently takes 1 million years to decrypt a message then complete Ta-

ble 3.7, assuming a 40% increase in computing power each year.

Table 3.7 Time to decrypt a message assuming an increase in computing power

Year Time to decrypt (years) Year Time to decrypt (years)

0 1 million 10

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18

9 19

3.14.22 The following messages were encrypted using the code mapping:

 Input: abcdefghijklmnopqrstuvwxyz

 Encrypted: mgqoafzbcdiehxjklntqrwsuvy

 (i) qnv#mxo#oaqjoa#qbct#hattmza

 (ii) zjjogva#mxo#fmnasaee#jxa#mxo#mee

 (iii) oaqjoa#qbct#mx#vjr#bmwa#fcxctbao#qbct#lratqcjx

 Decrypt them and determine the message. (Note that a ‘#’ character has been

 used as a SPACE character.)

36 Security and Forensic Computing

3.14.23 The following messages were encrypted using a shifted alphabet. Decrypt

them by determining the number of shifts. (Note that a ‘#’ character has

been used as a SPACE character.)

 (i) XLMW#MW#ER#IBEQTPI#XIBX

 (ii) ROVZ#S#KW#NBYGXSXQ#SX#DRO#COK

 (iii) ZVOKCO#MYWO#AESMU#WI#RYECO#SC#YX#PSBO

 (iv) IJ#D#YJ#IJO#RVIO#OJ#BJ#OJ#OCZ#WVGG

3.14.24 The following text is a character-mapped encryption. Table 3.1 defines the

table of letter probabilities, and can be compared with the probabilities in

the encrypted text.

tzf hbcq boybqtbmf ja ocmctbe tfqzqjejmv jyfl bqbejmrf cn tzbt ocmctbe ncmqben blf
efnn baafqtfo gv qjcnf. bqv rqwbqtfo ocntjltcjq boofo tj b ncmqbe cn ofnqlcgfo bn
qjcnf. tzcn qjreo gf mfqflbtfo gv futflqbe firckhfqt kljorqcqm bclgjlqf ntbtcq,
aljh jtzfl ncmqben qjrkecqm cqtj tzf ncmqbe'n kbtz (qljnn-tbed), aljh wctzcq
fefqtlcqbe qjhkjqfqtn, aljh lfqjlocqm bqo kebvgbqd hfocb, bqo nj jq. b qjhkblbtjl
jrtkrtn b zcmz efyfe ca tzf ncmqbe yjetbmf cn mlfbtfl tzbq tzf tzlfnzjeo yjetbmf,
fenf ct jrtkrtn b ejw. ca tzf qjcnf yjetbmf cn efnn tzbq tzf tzlfnzjeo yjetbmf
tzfq tzf qjcnf wcee qjt baafqt tzf lfqjyflfo ncmqbe. fyfq ca tzf qjcnf cn mlfbtfl
tzbq tzcn tzlfnzjeo tzflf blf tfqzqcirfn wzcqz qbq lforqf ctn faafqt. ajl fubhkef,
futlb gctn qbq gf boofo tj tzf obtb fctzfl tj oftfqt flljln jl tj qjllfqt tzf gctn
cq flljl.
 eblmf bhjrqtn ja ntjlbmf blf lfirclfo ajl ocmctbe obtb. ajl fubhkef, nfyfqtv
hcqrtfn ja zcac irbectv hrncq lfirclfn jyfl ncu zrqolfo hfmgvtfn ja obtb ntjlbmf.
tzf obtb jqqf ntjlfo tfqon tj gf lfecbgef bqo wcee qjt ofmlbof jyfl tchf (futlb
obtb gctn qbq benj gf boofo tj qjllfqt jl oftfqt bqv flljln). tvkcqbeev, tzf obtb
cn ntjlfo fctzfl bn hbmqftcq acfeon jq b hbmqftcq ocnd jl bn kctn jq bq jktcqbe
ocnd. tzf bqqrlbqv ja ocmctbe nvntfhn ofkfqon jq tzf qrhgfl ja gctn rnfo ajl fbqz
nbhkef, wzflfbn bq bqbejmrf nvntfh'n bqqrlbqv ofkfqon jq qjhkjqfqt tjeflbqqf.
bqbejmrf nvntfhn benj kljorqf b ocaaflcqm lfnkjqnf ajl ocaaflfqt nvntfhn wzflfbn b
ocmctbe nvntfh zbn b ofkfqobgef lfnkjqnf.
 ct cn yflv ocaacqret (ca qjt chkjnncgef) tj lfqjyfl tzf jlcmcqbe bqbejmrf ncmqbe
batfl ct cn baafqtfo gv qjcnf (fnkfqcbeev ca tzf qjcnf cn lbqojh). hjnt hftzjon ja
lforqcqm qjcnf cqyjeyf njhf ajlh ja acetflcqm jl nhjjtzcqm ja tzf ncmqbe. b mlfbt
boybqtbmf ja ocmctbe tfqzqjejmv cn tzbt jqqf tzf bqbejmrf obtb zbn gffq qjqyfltfo
tj ocmctbe tzfq ct cn lfebtcyfev fbnv tj ntjlf ct wctz jtzfl krlfev ocmctbe obtb.
jqqf ntjlfo cq ocmctbe ct cn lfebtcyfev fbnv tj kljqfnn tzf obtb gfajlf ct cn
qjqyfltfo gbqd cqtj bqbejmrf.
 bq boybqtbmf ja bqbejmrf tfqzqjejmv cn tzbt ct cn lfebtcyfev fbnv tj ntjlf. ajl
fubhkef, ycofj bqo brocj ncmqben blf ntjlfo bn hbmqftcq acfeon jq tbkf bqo b
kcqtrlf cn ntjlfo jq kzjtjmlbkzcq kbkfl. tzfnf hfocb tfqo tj boo qjcnf tj tzf
ncmqbe wzfq tzfv blf ntjlfo bqo wzfq lfqjyflfo (nrqz bn tbkf zcnn). rqajltrqbtfev,
ct cn benj qjt kjnncgef tj oftfqt ca bq bqbejmrf ncmqbe zbn bq flljl cq ct.

3.14.25 The following is a piece of character-mapped encrypted text. The

 common 2-letter words in the text are:

 to it is to in as an

 and the common 3-letter words are:

 for and the

ixq rnecq ja geie bjhhrtqbeiqjtn etg bjhkriqw tqisjwzn qn qyqw qtbwqenqtc. qi qn
jtq ja ixq aqs iqbxtjmjcqbem ewqen sxqbx fwqtcn fqtqaqin ij hjni ja ixq bjrtiwqqn
etg ixq kqjkmqn ja ixq sjwmg. sqixjri qi hetv qtgrniwqqn bjrmg tji quqni. qi qn
ixq jfdqbiqyq ja ixqn fjjz ij gqnbrnn geie bjhhrtqbeiqjtn qt e wqegefmq ajwh ixei
nirgqtin etg kwjaqnnqjtemn emm jyqw ixq sjwmg bet rtgqwnietg.
 qt ixq keni, hjni qmqbiwjtqb bjhhrtqbeiqjt nvniqhn iwetnhqiiqg etemjcrq nqctemn.
jt et etemjcrq iqmqkxjtq nvniqh ixq yjmiecq mqyqm awjh ixq kxjtq yewqqn sqix ixq
yjqbq nqctem. rtsetiqg nqctemn awjh quiqwtem njrwbqn qenqmv bjwwrki ixqnq nqctemn.

 W.Buchanan 37

qt e gqcqiem bjhhrtqbeiqjt nvniqh e nqwqqn ja gqcqiem bjgqn wqkwqnqtin ixq
etemjcrq nqctem. ixqnq ewq ixqt iwetnhqiiqg en jtqn etg oqwjn. gqcqiem qtajwheiqjt
qn mqnn mqzqmv ij fq eaaqbiqg fv tjqnq etg xen ixrn fqbjhq ixq hjni kwqgjhqteti
ajwh ja bjhhrtqbeiqjtn.
 gqcqiem bjhhrtqbeiqjt emnj jaaqwn e cwqeiqw trhfqw ja nqwyqbqn, cwqeiqw iweaaqb
etg emmjsn ajw xqcx nkqqg bjhhrtqbeiqjtn fqisqqt gqcqiem qlrqkhqti. ixq rnecq ja
gqcqiem bjhhrtqbeiqjtn qtbmrgqn befmq iqmqyqnqjt, bjhkriqw tqisjwzn, aebnqhqmq,
hjfqmq gqcqiem wegqj, gqcqiem ah wegqj etg nj jt.

3.16 Software Tutorial

3.15.1 Prove that the following program can decrypt an encrypted message with

the correct encryption key, while an incorrect one does not. Change the

program so that the user enters the encryption key, and also the decryption

key:

using System;
using XCrypt;
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp
namespace encryption
{
 class MyEncryption
 {
 static void Main(string[] args)
 {
 XCryptEngine xe = new XCryptEngine();
 xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES);
 xe.Key = "MyKey";

 Console.WriteLine("Enter string to encrypt:");
 string inText = Console.ReadLine();

 string encText = xe.Encrypt(inText);

 xe.Key = "test"; // should not be able to decrypt as the key differs

 try
 {
 string decText = xe.Decrypt(encText);

 Console.WriteLine("Input: {0}\r\nEncr: {1}\r\nDecr: {2}",
 inText,encText,decText);
 }
 catch { Console.WriteLine("Cannot decrypt");} ;
 Console.ReadLine();

 }
 }
}

 Web link: http://buchananweb.co.uk/srcSecurity/tut4_1.zip

3.15.2 The following program uses a single character as an encryption key, and

then searches for the encryption key, and displays it. Modify it so that it

implements a 2-character encryption key, and then a 3-character one:

using System;
using XCrypt;
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp
namespace encryption
{
 class MyEncryption
 {
 static void Main(string[] args)
 {
 XCryptEngine xe = new XCryptEngine();

38 Security and Forensic Computing

 xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES);
 xe.Key = "f";
 Console.WriteLine("Enter string to encrypt:");
 string inText = Console.ReadLine();

 string encText = xe.Encrypt(inText);
 for (char ch ='a'; ch<='z'; ch++)
 {
 try
 {
 xe.Key=ch.ToString();
 string decText = xe.Decrypt(encText);
 if (inText==decText) Console.WriteLine("Encryption key found {0}",
 xe.Key);
 }
 catch {} ;
 }
 Console.ReadLine();
 }
 }
}

An example test run is:

Enter string to encrypt:
test
Encryption key found f

 Web link: http://buchananweb.co.uk/srcSecurity/tut4_2.zip

3.15.3 The following program implements a basic alphabet shifter. Modify it so

that it implements a coding mapping system:

using System;
namespace alpha
{
 class AlphaShift
 {
 static void Main(string[] args)
 {
 string output = "defghijklmnopqrstuvwxyzabc";
 Console.Write("Enter a word to convert: ");
 string ins = Console.ReadLine();
 char [] inp = ins.ToCharArray();
 char [] oup = output.ToCharArray();
 Console.Write("Converted text is: ");
 for (int i=0;i<ins.Length;i++)
 {
 Console.Write(oup[inp[i]-'a']);
 }
 Console.ReadLine();
 }
 }
}

 Web link: http://buchananweb.co.uk/srcSecurity/tut4_3.zip

3.15.4 Modify the program in 3.15.3 so that it decodes the encoded output.

3.15.5 The following program uses Diffie-Hellman values of G of 20, and n of 99,

for values of x and y from 1 to 4 and gives a sample run of:

x y A B K1 K2
1 1 20 20 20 20

 W.Buchanan 39

1 2 20 4 4 4
1 3 20 80 80 80
2 1 4 20 4 4
2 2 4 4 16 16
2 3 4 80 64 64
3 1 80 20 80 80
3 2 80 4 64 64
3 3 80 80 71 71

using System;
namespace diffie
{
 class Diffie
 {
 static void Main(string[] args)
 {
 long x,y,A,B,n,G,K1, K2;
 G= 20; n= 99;
 Console.WriteLine("x\ty\tA\tB\tK1\tK2");
 for (x=1;x<4;x++)
 for (y=1;y<4;y++)
 {
 double val1= Math.Pow((double)G,(double)x);
 double val2= Math.Pow((double)G,(double)y);
 Math.DivRem((long)val1,n,out A);
 Math.DivRem((long)val2,n,out B);
 Math.DivRem((long)Math.Pow((double)B,(double)x),n,out K1);
 Math.DivRem((long)Math.Pow((double)A,(double)y),n,out K2);
 Console.WriteLine("{0}\t{1}\t{2}\t{3}\t{4}\t{5}",x,y,A, B, K1, K2);
 }
 Console.ReadLine();
 }
 }
}

 Web link: http://buchananweb.co.uk/srcSecurity/diffie.zip

Modify the program so that the maximum values of x and y are increased,

and thus determine the maximum values that still produce the same values of

K1 and K2.

3.17 Web Page Exercises

Implement following Web pages using Visual Studio 2008:

3.16.1 http://buchananweb.co.uk/security07.aspx [3DES]

3.16.2 http://buchananweb.co.uk/security06.aspx [RC2]

3.16.3 http://buchananweb.co.uk/security15.aspx [AES]

3.16.4 http://buchananweb.co.uk/security18.aspx [RSA]

3.18 Network Simulation Tutorial

3.17.1 On NetworkSims, go to ISCW and select Challenge 28. Create a policy, for

the router, and determine the options:

 For encryption:

 For Hash:

 For Diffie-Hellman group:

 For Authentication method:

 Lifetime range (seconds):

40 Security and Forensic Computing

An example is given next for the encryption options:

config t
(config)# crypto isakmp enable
(config)# crypto isakmp policy 111
(config-isakmp)# encryption ?
 3des Three key triple DES
 aes AES - Advanced Encryption Standard.
 des DES - Data Encryption Standard (56 bit keys).

Thus the options are 3DES, AES and DES.

3.17.2 On NetworkSims, go to PIX_SNPA and select Challenge 22. Create a policy,

for the PIX firewall, and determine the options:

 For encryption:

 For Hash:

 For Diffie-Hellman group:

 For Authentication method:

 Lifetime range (seconds):

3.19 Challenges

There are a number of challenges related to cipher coding. These are at:

http://buchananweb.co.uk/security19.aspx [ASCII coding]

http://buchananweb.co.uk/security19a.aspx [Bible codes]

http://buchananweb.co.uk/security20.aspx [Alphabet shifting]

http://buchananweb.co.uk/security21.aspx [Coded messages]

http://buchananweb.co.uk/security22.aspx [Covert channels]

http://buchananweb.co.uk/security23.aspx [Watermarks]

http://buchananweb.co.uk/security25.aspx [Test]

http://buchananweb.co.uk/security26.aspx [Scrambled alphabet]

http://buchananweb.co.uk/security27.aspx [Vigenère]

What was your final score?

Next complete: http://buchananweb.co.uk/it4u00.aspx

3.20 On-line Exercises

The on-line exercise for this chapter are at:

http://buchananweb.co.uk/encryption.html

3.21 NetworkSims Exercises

Complete:

http://buchananweb.co.uk/security19.aspx
http://buchananweb.co.uk/security19a.aspx
http://buchananweb.co.uk/security20.aspx
http://buchananweb.co.uk/security21.aspx
http://buchananweb.co.uk/security22.aspx
http://buchananweb.co.uk/security23.aspx
http://buchananweb.co.uk/security25.aspx
http://buchananweb.co.uk/security26.aspx
http://buchananweb.co.uk/security27.aspx
http://buchananweb.co.uk/it4u00.aspx

 W.Buchanan 41

Complete: PIX_SNPA Challenge I1-10

3.22 Chapter Lecture

View the lecture at:

http://buchananweb.co.uk/security00.aspx

and select Principles to Encryption [Link].

http://buchananweb.co.uk/security00.aspx

