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3 Encryption 
 http://buchananweb.co.uk/security00.aspx, Select Principles of Encryption. 

3.1 Introduction 

The key objectives of this unit are to: 

 

 Define the methods used in encryption, especially for public and private key en-

cryption. 

 Understand methods that can be used to crack encrypted content. 

 Outline a range of standard encryption methods. 

3.2 Introduction 

The future of the Internet, especially in expanding the range of applications, involves 

a much deeper degree of privacy, and authentication. Without these the Internet 

cannot be properly used to replace existing applications such as in voting, finance, 

and so on. The future is thus towards data encryption which is the science of cryp-

tographics1, and provides a mechanism for two entities to communicate without any 

other entity being able to read their messages. In a secret communications system, 

Bob and Alice should be able to communicate securely, without Eve finding out the 

contents of their messages, or in keeping other details secure, such as their location, 

or the date that their messages are sent (Figure 3.1).  

 The two main methods used are to either use a unique algorithm which both Bob 

and Alice know, and do not tell Eve, or they use a well-known algorithm, which Eve 

also knows, and use some special electronic key to uniquely define how the message 

is converted into cipertext, and back again. A particular problem in any type of en-

cryption is the passing of the secret algorithm or the key in a secure way, as Bob or 

Alice does not know if Eve is listening to their communications. If Eve finds-out the 

algorithm or the key, neither Bob nor Alice is able to detect this. This chapter looks at 

some of the basic principles of encryption, including the usage of private-key and 

public-key methods. As we will find public and private key methods work together 

in perfect harmony, with, typically, private key methods providing in the actual core 

encryption, and public key methods providing ways to authenticate, and pass keys.  

 

                                                      
1 The word crytopgraphy is derived from the Greek words which means hidden, or secret, 

writing 

http://buchananweb.co.uk/security00.aspx
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Figure 3.1 Bob, Alice and Eve 

3.3 Simple cipher methods 

One method of converting a message into cipher text is for Bob and Alice to agree on 

some sort of algorithm which Bob will use to scramble his message, and then Alice 

will do the opposite to unscramble the scrambled message. An example of this is the 

Caesar code, where it is agreed by Bob and Alice that the letters of the alphabet will 

be moved by a certain number of positions to the left or the right. It is named as the 

Caesar code as it was first documented by Julius Caesar who used a 3-letter shift. 

 In the example in Figure 3.2 the letters for the code have been moved forwards by 

two positions, thus a ‘c’ becomes an ‘A’, thus a coded message of ‘RFC’ is decoded as 

‘the’. There are several problems with this type of coding, though. The main one is 

that it is not very secure as there are only 25 unique codings, thus it would be easy 

for someone to find out the mapping. An improvement is to scramble up the map-

ping, such as in a code mapping (Figure 3.3), where a random mapping is used to 

deter the conversion. As there are more mappings, it improves the security of the 

code (4.031026 mappings), but it is still seen as being insecure as the probability of 

the letter in the mapped code is typically a pointer to the mapping. For the code in 

Figure 3.3, an ‘A’ appears most often, thus it is likely to be an ‘e’, which is the most 

probably letter in written English. Next ‘Q’ appears four times, thus this could be a 

‘t’, which is the next most probable. A more formal analysis of the probabilities is 

given in Table 3.1, where the letter ‘e’ is the most probable, followed by ‘t’, and then 

‘o’, and so on. It is also possible to look at two-letter occurrences (digrams), or at 

three-letter occurrences (trigrams), or even with words, where ‘the’ is the most com-

mon word. 

 A code mapping encryption scheme is easy to implement, but, unfortunately, 

once it has been ‘cracked’, it is easy to decrypt the encrypted data. Normally this type 

of cipher is implemented with an extra parameter which changes its mapping, such 

as changing the code mapping over time depending on the time-of-day and/or date. 

Thus parties which are allowed to decrypt the message know the mappings of the 
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code for a given time and/or date. For example, each day of the week could have a 

different code mapping. 

 

 Web link: http://buchananweb.co.uk/flash_coding_shifted.html 

 Web link: http://buchananweb.co.uk/security20.aspx 

 Web link: http://buchananweb.co.uk/security30.aspx 

 

Figure 3.2 Caesar code 

 

 

Figure 3.3 Code mapping 

 

 Web link: http://buchananweb.co.uk/security26.aspx 

Table 3.1 Probability of occurrences 

Letters (%) Digrams (%) Trigrams (%) Words (%) 

E  13.05 TH  3.16 THE    4.72 THE    6.42 

T    9.02 IN  1.54 ING    1.42 OF   4.02 

O    8.21 ER  1.33 AND  1.13 AND  3.15 

A    7.81 RE  1.30 ION    1.00 TO    2.36 

N    7.28 AN  1.08 ENT    0.98 A      2.09 

http://buchananweb.co.uk/security20.aspx
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I    6.77 HE  1.08 FOR    0.76 IN      1.77 

R    6.64 AR  1.02 TIO    0.75 THAT  1.25 

S    6.46 EN  1.02 ERE    0.69 IS      1.03 

H    5.85 TI  1.02 HER    0.68 I      0.94 

D    4.11 TE  0.98 ATE    0.66 IT      0.93 

L    3.60 AT  0.88 VER    0.63 FOR      0.77 

C    2.93 ON  0.84 TER    0.62 AS      0.76 

F    2.88 HA  0.84 THA    0.62 WITH  0.76 

U    2.77 OU  0.72 ATI   0.59 WAS  0.72 

M    2.62 IT  0.71 HAT    0.55 HIS      0.71 

P    2.15 ES  0.69 ERS    0.54 HE      0.71 

Y    1.51 ST  0.68 HIS     0.52 BE      0.63 

W    1.49 OR  0.68 RES    0.50 NOT     0.61 

G    1.39 NT  0.67 ILL   0.47 BY      0.57 

B    1.28 HI  0.66 ARE    0.46 BUT      0.56 

V    1.00 EA  0.64 CON   0.45 HAVE  0.55 

K    0.42 VE  0.64 NCE    0.43 YOU     0.55 

X    0.30 CO  0.59 ALL    0.44 WHICH 0.53 

J    0.23 DE  0.55 EVE    0.44 ARE      0.50 

Q    0.14 RA  0.55 ITH     0.44 ON      0.47 

Z    0.09 RO  0.55 TED    0.44 OR     0.45 

 

3.3.1 Vigenère cipher 

An improved code was developed by Vigenère, where a different row is used for 

each character cipher, and is polyalphabetic cipher as it uses a number of cipher alpha-

bets. Then the way that the user moves between the rows must be agreed before 

encryption. This can be achieved with a code word, which defines the sequence of 

the rows. For example the codeword GREEN could be used which defines that the 

rows used are: Row 6 (G), Row 17 (R), Row 4 (E), Row 4 (E), Row 13 (N), Row 6 (G), 

Row 17 (R), and so on (see Table 3.2). Thus the message is converted as: 

Keyword   GREENGREENGREE 

Plaintext   hellohowareyou 

Ciphertext   NVPPBNFAEEKPSY 

The great advantage of this type of code is that the same plaintext character will be 

coded with different values, depending on the position of the keyword. For example, 

for a keyword is GREEN, ‘e’ can be encrypted as ‘K’ (for G), ‘V’ (for R), ‘I’ (for E) and 

‘R’ (for N). To improve security, the greater the size of the code word, the more the 

rows that can be included in the encryption process. Also, it is not possible to deci-

pher the code by simple frequency analysis, as letters will change their coding 

depending on the current position of the keyword. It is also safe from analysis of 

common two- and three-letter occurrences, if the keysize is relatively long. For ex-

ample ‘ee’ could be encrypted with ‘KV’ (for GR), ‘VI’ (for RE), ‘II’ (for EE), ‘IR’ (for 

EN) and ‘RK’ (for NG).  

Table 3.2 Coding 

Plain a b c d e f g h i j k l m n o p q r s t u v w x y z 

  1  B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

  2  C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

  3  D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

  4  E F G H I J K L M N O P Q R S T U V W X Y Z A B C D  

  5  F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 
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  6  G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 

  7  H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 

  8  I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 

  9  J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 

10  K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 

11  L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 

12  M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 

13  N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

14  O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 

15  P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

16  Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 

17  R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

18  S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

19  T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

20  U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 

21  V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 

22  W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 

23  X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 

24  Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

25  Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 

 Web link: http://buchananweb.co.uk/flash_vin.html 

 Web link: http://buchananweb.co.uk/security27.aspx 

 Web link: http://buchananweb.co.uk/security29.aspx 

3.3.2 Homophonic substitution code 

A homophonic substitution code overcomes the problems of frequency analysis of 

code, as it assigns a number of codes to a character which relates to the probability of 

the characters. For example the character ‘e’ might have 12 codes assigned to it, but 

‘z’ would only have one. An example code is given in Table 3.3.  

 With this, each of the codes is assigned at random for each of the letters, with the 

number of codes assigned relating to the probability of their occurrence. Thus, using 

the code table in Table 3.3, the code mapping would be: 

 

Plaintext  h   e  l  l  o  e  v  e  r  y  o  n  e  

Ciphertext:  19 25 42 81 16 26 22 28 04 55 30 00 32 

 

In this case there are four occurrences of the letter ‘e’, and each one has a different 

code. As the number of codes depends on the number of occurrences of the letter, 

each code will roughly have the same probability, thus it is not possible to determine 

the code mapping from the probabilities of codes. Unfortunately the code is not per-

fect as the English language still contains certain relationships which can be traced. 

For example the letter ‘q’ normally is represented by a single code, and there are 

three codes representing a ‘u’. Thus, if the ciphertext contains a code followed by one 

of three codes, then it is likely that the plaintext is a ‘q’ and a ‘u’. 

 A homophonic cipher is a monoalphabetic code, as it only uses one translation 

for the code mappings (even though several codes can be used for a single plaintext 

letter). This type of alphabet remains constant, whereas a polyalphabet can change its 

mapping depending on a variable keyword. 

Table 3.3 Example homophonic substitution 

a   b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z 

http://buchananweb.co.uk/flash_vin.html
http://buchananweb.co.uk/security27.aspx
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07 11 17 10 25 08 44 19 02 18 41 42 40 00 16 01 15 04 06 05 13 22 45 12 55 47 

31 64 33 27 26 09 83 20 03       81 52 43 30 62    24 34 23 14    46    93 

50    49 51 28       21 29       86    80 61       39 56 35 36             

63       76 32       54 53       95    88 65       58 57 37    

66          48       70 68             89 91       71 59 38    

77          67       87 73                94       00 90 60    

84          69                            96             74    

            72                                           78    

            75                                           92    

            79                                                 

            82  

            85 

3.4 Encryption operators 

It is important that the operators used in encryption do not loose any information in 

the encryption process, and that the operators must be reversible in some way. Along 

with this, the encryption process is fairly processor-intensive, thus the operators 

must be fairly simple in their approach for fast conversion for Bob and Alice, but 

which involved extensive processing for Eve. The main operators which fit these 

characteristics are: bit-shift, eXclusive-OR (X-OR -  ) and the mod operators. These 

typically can be achieved in a single operation, and can thus be used for fast encryp-

tion and decryption.  

 The bit-shift operators can either be left- or right- shift (or more precisely rotate 

left, or rotate right operators), where the shifting process normally takes the bits 

which exit from one end, and put them onto the other end. This is normally defined 

as a rotation – thus we can have a rotate left or a rotate right. For example, an encryp-

tion process might operate by taking one byte at a time and rotating them left by four 

places: 

 

Input   1010 1000  1111 0000  0101 1100  0000 0001 

Output  1000 1010  0000 1111  1100  0101  0001 0000 

 

Thus the decryption process would merely rotate each of the bits of the bytes by four 

places to the right.  

 Along with the shift operators, another important operator is the X-OR operator. 

Its basic function is: 

 

Bit1  Bit2  Output 

0   0   0 

1   0   1 

0   1   1 

1   1   0 

 

Thus an operation could be to X-OR each byte by 0101 0101: 

 

Input   1010 1000 1111 0000 0101 1100 0000 0001 



 W.Buchanan 7 

X-OR   0101 0101 0101 0101    0101 0101 0101 0101 

Output  1111 1101 1010 0101 0100 1001 0101 0100 

 

The great advantage of the X-OR is that, like the bit rotate operators, it preserves the 

information in the processed output, and can be undone merely by operating on the 

output with the value that was used to process the value. For example: 

 

Output 1111 1101 1010 0101 0100 1001 0101 0100 

X-OR  0101 0101 0101 0101    0101 0101 0101 0101 

Input  1010 1000 1111 0000 0101 1100 0000 0001 

 

which results in the original value. Thus a simple encryption process might be: 

 

- Take 32 bits at a time. 

- Shift bits by four spaces to the left. 

- X-OR the value by 1010 1000. 

- Shift bits by two spaces to the right. 

- X-OR the value by 1010 1000. 

 

Then, the decryption process would be (reading 32 bits at a time): 

 

- X-OR the value by 1010 1000 

- Shift bits by two spaces to the left. 

- X-OR the value by 1010 1000. 

- Shift bits by four spaces to the right. 

 

The other operator is mod, which returns the remainder of a division operation. For 

example 29 mod 7 gives 1. 

3.5 Key-based cryptography 

The main objective of cryptography is to provide a mechanism for two (or more) en-

tities to communicate without any other entity being able to read or change the 

message. Along with this it can provide other services, such as: 

 

 Integrity check. This  makes sure that the message has not been tampered with by 

non-legitimate sources. 

 Providing authentication. This verifies the sender identity. Unfortunately most of 

the current Internet infrastructure has been build on a fairly open system, where 

users and devices can be easily spoofed, thus authentication is now a major factor 

in verifying users and devices. 

 

One of the main problems with using a secret algorithm for encryption is that it is 

difficult to determine if Eve has found-out the algorithm used, thus most encryption 

methods use a key-based approach where an electronic key is applied to a well-

known algorithm. Another problem with using different algorithms for the encryp-

Same value 
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tion is that it is often difficult to keep devising new algorithms and also to tell the re-

ceiving party that the text is being encrypted with the new algorithm. Thus, using 

electronic keys, there are no problems with everyone having the encryp-

tion/decryption algorithm, because without the key it should be computationally 

difficult to decrypt the message (Figure 3.4). 

 The three main methods of encryption are (Figure 3.5): 

 

- Symmetric key-based encryption. This involves the same key being applied to 

the encrypted data, in order that the original data is recovered. Typical methods 

are DES, 3DES, RC2, RC4, AES, and so on. 

- Asymmetric key-based encryption. This involves using a different key to de-

crypt the encrypted data, in order that the original data is recovered. A typical 

method is RSA, DSA and El Gamal. 

- One-way hash functions. With this it is not possible to recover the original 

source information, but the mapping between the value and the hashed value is 

known. The one-way hash function is typically used in authentication applica-

tions, such as generating a hash value for a message, and will be covered in Unit 

4. The two main methods are MD5 and SHA-1, and it is also used in password 

hashing applications, where a password is hashed with a one-way function, and 

the result is stored. This is the case in Windows and UNIX login, where the 

password is stored as a hash value. Unfortunately, if the password is not a strong 

one, the hash value is often prone to a dictionary-type attack, where an intruder 

tries many different passwords and hashes them, and then compares it with the 

stored one. 
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Figure 3.4 Key-based encryption 
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Figure 3.5 Encryption methods 

3.5.1 Computation difficulty 

Every code is crackable and the measure of the security of a code is the amount of 

time it takes a person not addressed in the code to break it. Unless there are weak-

nesses in the encryption algorithm, the normal way to break cipher text is where a 

computer tries all the possible keys, until it finds a match. Thus a 1-bit code would 

only have two keys; a 2-bit code would have four keys; and so on. Table 3.4 shows 

the number of possible keys, as a function of the number of bits in the key. For ex-

ample it can be seen that a 64-bit code has 18400000000000000000 different keys. 

Thus if one key is tested every 10 s then it would take 1.841014 seconds (5.111010 

hours or 2.13108 days or 5834602 years). So, for example, if it takes 1 million years 

for a person to crack the code, it can be considered safe. Unfortunately, from the 

point of security of an encrypted message, the performance of computer systems in-

creases by the year. For example, if a computer takes 1 million years to crack a code, 

then assuming an increase in computing power of a factor of two per year, it would 

take 500000 years the next year. Then, Table 3.3 shows that after almost 20 years it 

would take only 1 year to decrypt the same message. This is a worrying factor as en-

cryption algorithms which are used in the financial applications, which was one of 

the first after the military to adopt encryption, are now over 30 years old2. 

 The increasing power of computers is one factor in reducing the processing time; 

another is the increasing usage of parallel processing, as data decryption is well suit-

                                                      
2 DES is the standard encryption algorithm used in financial transactions and was first pub-

lished in 1977. 
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ed to parallel processing as each processor element can be assigned a number of keys 

to check the encrypted message. Each of them can then work independently of the 

other3. Table 3.6 gives typical times, assuming a doubling of processing power each 

year, for processor arrays of 1, 2, 4…4096 elements. It can thus be seen that with an 

array of 4096 processing elements it takes only seven years before the code is de-

crypted within two years. Thus an organization which is serious about deciphering 

messages is likely to have the resources to invest in large arrays of processors, or 

networked computers. It is also likely that many governments have computer sys-

tems which have thousands of processors, operating in parallel.  

Table 3.4 Number of keys related to the number of bits in the key 

Code size Number of keys Code size Number of keys Code size Number of keys 

1 2 12 4 096 52 4.5  1015 

2 4 16 65 536 56 7.21  1016 

3 8 20 1 048 576 60 1.15  1018 

4 16 24 16 777 216 64 1.84  1019 

5 32 28 2.68  108 68 2.95  1020 

6 64 32 4.29  109 72 4.72  1021 

7 128 36 6.87  1010 76 7.56  1022 

8 256 40 1.1  1012 80 1.21  1024 

9 512 44 1.76  1013 84 1.93  1025 

10 1 024 48 2.81  1014 88 3.09  1026 

Table 3.5 Time to decrypt a message assuming an increase in computing power 

Year Time to decrypt (years) Year Time to decrypt (years) 

0 1 million 10 977 

1 500000 11 489 

2 250000 12 245 

3 125000 13 123 

4 62500 14 62 

5 31250 15 31 

6 15625 16 16 

7 7813 17 8 

8 3907 18 4 

9 1954 19 2 

Table 3.6 Time to decrypt a message with increasing power and parallel processing 

Processors Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 

1 1000000 500000 250000 125000 62500 31250 15625 7813 

2 500000 250000 125000 62500 31250 15625 7813 3907 

4 250000 125000 62500 31250 15625 7813 3907 1954 

8 125000 62500 31250 15625 7813 3907 1954 977 

16 62500 31250 15625 7813 3907 1954 977 489 

32 31250 15625 7813 3907 1954 977 489 245 

64 15625 7813 3907 1954 977 489 245 123 

128 7813 3907 1954 977 489 245 123 62 

256 3906 1953 977 489 245 123 62 31 

512 1953 977 489 245 123 62 31 16 

1024 977 489 245 123 62 31 16 8 

                                                      
3 This differs from many applications in parallel processing which suffer from interpro-

cess(or) communication 
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2048 488 244 122 61 31 16 8 4 

4096 244 122 61 31 16 8 4 2 

3.5.2 Cracking the code 

A cryptosystem normally converts plaintext into ciphertext, using a key. There are 

several methods that an intruder can use to crack a code, including: 

 

 Exhaustive search. Where the intruder uses brute force to decrypt the ciphertext 

and tries every possible key (Figure 3.6). 

 Known plaintext attack. Where the intruder knows part of the ciphertext and the 

corresponding plaintext. The known ciphertext and plaintext can then be used to 

decrypt the rest of the ciphertext  (Figure 3.7). 

 Man-in-the-middle. Where the intruder is hidden between two parties and im-

personates each of them to the other (Figure 3.8). 

 Chosen-ciphertext. Where the intruder sends a message to the target, this is then 

encrypted with the target’s private-key and the intruder then analyses the en-

crypted message. For example, an intruder may send an e-mail to the encryption 

file server and the intruder spies on the delivered message. 

 Active attack. Where the intruder inserts or modifies messages (Figure 3.9). 

 The replay system. Where the intruder takes a legitimate message and sends it 

into the network at some future time (Figure 3.10). 

 Cut-and-paste. Where the intruder mixes parts of two different encrypted mes-

sages and, sometimes, is able to create a new message. This message is likely to 

make no sense, but may trick the receiver into doing something that helps the in-

truder. 

 Time resetting. Some encryption schemes use the time of the computer to create 

the key. Resetting this time or determining the time that the message was created 

can give some useful information to the intruder.  

 Time attack. This involves determining the amount of time that a user takes to 

decrypt the message; from this the key can be found. 
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Figure 3.6 Exhaustive search 
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Figure 3.7 Known plaintext attack 
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Figure 3.8 Man-in-the-middle 
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Figure 3.9 Replay attack 
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Figure 3.10 Active attack 

3.5.3 Stream encryption and block encryption 

The encryption method can either be applied by selecting blocks of a data, and then 

encrypting them, or it can operate on a data stream, where one bit at a time is en-

crypted (Figure 3.11). Typical block sizes are 128, 192 or 256 bits. Overall stream 

encryption is much faster, and can typically be applied in real-time applications. For 

example, stream-based encryption is used with wireless systems, where an infinite 

key is created from the wireless key. This is then exclusive-OR-ed with the data 

stream, to produce the ciperstream. The main methods are (Figure 3.11 and Figure 

3.12): 

 

 Stream encryption:  RC4 (one of the fastest streaming algorithms around). 

 Block encryption: RC2 (40-bit key size), RC5 (variable block size), IDEA, DES, 

3DES, AES (Rijndael), Blowfish and Twofish. 

 

3DES:   Web link: http://buchananweb.co.uk/security07.aspx 

http://buchananweb.co.uk/security07.aspx
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RC2:    Web link: http://buchananweb.co.uk/security06.aspx 

AES:    Web link: http://buchananweb.co.uk/security15.aspx 

RSA:    Web link: http://buchananweb.co.uk/security08.aspx 
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Figure 3.11 Block coding 

The most widely used private-key encryption (symmetric) algorithms are: 

 

 RC2 (40-bit key size, 64-bit blocks. 

 RC4 (stream cipher) – used in SSL and WEP. 

 RC5 (variable key size, 32, 64 or 128 bit block sizes). 

 AES (128, 192 or 256 bit key size, 128 bit block size). 

 DES (56 bit key size, 64 bit block size). 

 3DES (168 bit key size, 64 bit block size).  

 

An example of a stream conversion is: 

 

Data stream:    0101110101010111 

Pseduo-infinite key:  1001100000111010  

Result:      1100010101101101 

 

where the receive will then generate the same infinite key, and simply X-OR it with 

the received stream to recover the data stream. A weakness of the system is obvious-

ly in the way that the pseduo-infinite key, which is typically generated from a pass 

phrase (which limits the actual range of keys). To overcome the same pseduo-infinite 

key being used for different communications, an initialization vector (IV) is normally 

used (the random seed). This can then be incremented each for each data frame sent, 

and will thus result in a different key for each transmission. Unfortunately the IV 

value has a limited range, and will enventually roll-over to the same value, after-

which an intruder can use a statisical analysis technique to crack the code. 

 

See: http://ceres.napier.ac.uk/staff/bill/wireless_security/wireless_security.htm 

http://buchananweb.co.uk/security15.aspx
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Figure 3.12 Stream coding 

3.6 Brute-force analysis 
It is important to understand how well cipher text will cope with a brute force attack, 

where an intruder tries all the possible keys. As an example, let’s try a 64-bit encryp-

tion key which gives us: 1.841019 combinations (264). If we now assume that we have 

a fast processor that tries one key every billionth of second (1GHz clock), then the 

average4 time to crack the code will be: 

 

seconds 000,000,000,921011084.1 919  

averageT 5  

It will thus take approximately 2.5 million hours (150 million minutes or 285 years) to 

crack the code, which is likely to be strong enough in most cases. Unfortunately as 

we have seen, the computing power often increases by the year, so if we assume a 

doubling of computing power, then: 

 

Date  Hours  Days Years 

0   2,500,000  104,167 285 

+1   1,250,000  52,083 143 

+2      625,000    26,042 71 

+3      312,500    13,021 36 

+4      156,250     6,510 18 

+5       78,125      3,255 9 

+6       39,063      1,628 4 

+7       19,532       814 2 

                                                      
4 The average time will be half of the maximum time 
5  9,223,372,036 seconds to be more precise 
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+8        9,766         407 1  

+9         4,883        203 1 

+10        2,442        102 0.3 

+11        1,221          51  0.1 

+12          611          25  0.1 

+13          306         13  0 

+14          153           6  0 

+15          77            3  0 

+16          39            2  0 

+17          20            1  0 

 

we can see that it now only takes 17 years to crack the code in a single day! If we 

then apply parallel processing, the time to crack reduces again. In the following an 

array of 22 (4 processing elements), 44 (16 processing elements), and so on, are 

used to determine the average time taken to crack the code. If, thus, it currently takes 

2,500,000 minutes to crack the code, it can be seen that by Year 6, it takes less than 

one minute to crack the code, with a 256256 processing matrix. 

 
Processing 

Elements 

Year 0 

(minutes) 

Year 1 

(min) 

Year 2 

(min) 

Year 3 

(min) 

Year 4 

(min) 

Year 5 

(min) 

Year 6 

(min) 

Year 7 

(min) 

1 2500000 1250000 625000 312500 156250 78125 39062.5 19531.3 

4 625000 312500 156250 78125 39062.5 19531.3 9765.7 4882.9 

16 156250 78125 39062.5 19531.3 9765.7 4882.9 2441.5 1220.8 

64 39063 19531.5 9765.8 4882.9 2441.5 1220.8 610.4 305.2 

256 9766 4883 2441.5 1220.8 610.4 305.2 152.6 76.3 

1024 2441 1220.5 610.3 305.2 152.6 76.3 38.2 19.1 

4096 610 305 152.5 76.3 38.2 19.1 9.6 4.8 

16384 153 76.5 38.3 19.2 9.6 4.8 2.4 1.2 

65536 38 19 9.5 4.8 2.4 1.2 0.6 0.3 

 

The use of parallel processing is now well-known in the industry, and the Electronic 

Frontier  Foundation (EFF) set out to prove that DES was weak, and created a 56-bit 

DES crack which had an array of 29 circuits of 64 chips (1856 elements), and pro-

cessed 90,000,000 keys per seconds. It, in 1998, eventually cracked the code within 2.5 

days. A more recent machine is the COPACOBANA (Cost-Optimized Parallel COde 

Breaker) which costs less than $10,000, and can crack a 64-bit DES code in less than 

nine days.  

 The ultimate in distributed applications is to use unused processor cycles of ma-

chines connected to the Internet. For this applications such as distributed.net allow 

the analysis of a key space when the screen saver is on (Figure 3.13). It has since used 

the method to crack a number of challenges, such as in 1997 with a 56-bit RC5 En-

cryption Challenge. It was cracked in 250 days, and has since moved on, in 2002, to 

crack 64-bit RC5 Encryption Challenge in 1,757 days (with 83% of the key space test-

ed). The current challenge involves a 72-bit key.  

 Along with increasing power of computers, and parallel processing, another 

method of improving the performance of brute force analysis is to use supercomput-

ers. Two of the most powerful machines in the world are: 
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 BlueGene/L – eServer Blue Gene Solution. DOE/NNSA/LLNL, IBM Department 

of Energy's (DOE) National Nuclear Security Administration's (NNSA) which has 

131,072 processors, and gives a throughout of 367,000 Gigaflop= 367,000,000 

Mflops (which is 1,835,000 times more powerful than a desktop). The University 

of Edinburgh has just deployed their new BlueGene and runs at 60,000 Gigaflops.  

 Red Storm - Sandia/ Cray Red Storm. NNSA/Sandia National Laboratory United 

States. It has a 2.4 GHz dual core from Cray Inc and has 26,544 processors with an 

operating throughput of 127,000 Gflops. 

 

An encryption algorithm which is cracked in a million minutes on a standard PC, 

could BlueGene less than a minute to crack.  

 

 

 

Figure 3.13 Distributed.net 

3.7 Public-key, private-key and session keys 

The encryption process can either use a public key or a secret key (Figure 3.4). With a 

secret key, the key is only known to the two communicating parties (symmetric key-

based encryption). This key can be fixed or can be passed from the two parties over a 

secure communications link (perhaps over the postal network or a leased line). The 

two popular private key techniques are DES (Data Encryption Standard) and IDEA 

(International Data Encryption Algorithm). 

 In public-key encryption, each entity has both a public and a private key (asym-

metric key-based encryption). The two entities then communicate using each other’s 

public keys. Normally, in a public-key system, each user uses a public enciphering 

transformation which is widely known and a private deciphering transform which is 

known only to that user. The private transformation is described by a private key, 

and the public transformation by a public key derived from the private key by a one-

way transformation. The RSA (after its inventors Rivest, Shamir and Adleman) tech-

nique is one of the most popular public-key techniques and is based on the difficulty 

of factoring large numbers.  

 Another important factor is the time relavence of the generated keys (whether 

symmetric or asymmetric keys), where the keys could be fixed for a range of connec-
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tions, and have some form of key regeneration after a certain number of connections, 

or for a certain time limit. They can also be sessional, where the keys are defined for 

each session. The advantage with sessional keys is that they typically do not have to 

be as long as non-time based keys, as the session typically only occurs for a short 

time, after which new keys are regenerated. Thus with brute force the intruder might 

only be able to get the details of a single session, by which time it is probably too late 

to gain and useful information from it. In wireless communications, the WEP encryp-

tion standard uses a fixed key, based on a pass phrase, and is used by all the nodes 

on the network. Thus, once the key has been cracked it can be used to decrypt all the 

communications for the network. An improvement on this is to use TKIP (which is 

part of WPA), which uses a session key for each connection, and it is thus much more 

difficult to crack. Both these techniques use the RC4 encryption method, which uses 

stream encryption. Newer systems are likely to be based around WPA-2 which uses a 

block encryption standard (AES). 

3.8 Adding salt 
A major problem in encryption is playback where an intruder can copy an encrypted 

message and play it back, as the same plain text will always give the same cipher 

text. The solution is to add salt to the encryption key, as that it changes its operation 

from block-to-block (for block encryption) or data frame-to-data frame (for stream 

encryption). The Electronic Code Book (ECB) method is weak, as the same cipher text 

appears for the same blocks. For example: 

 

Hello -> 5ghd%43f= 

Hello ->  5ghd%43f= 

 

If the intruder knew that the plaintext was “Hello”, they would be able to play back 

this message. This solution to this is to add salt. This is typically done with an IV (Ini-

tialisation Vector) which must be the same on both sides. In WEP, the IV is 

incremented for each data frame, so that the cipher text changes. As can be seen in 

Figure 3.15, in blocks of the same data will be encrypted in the same way. An im-

porvement is to use Cipher Block Chaining (CBC). This method uses the IV for the 

first block, and then the results from the previous block to encrypt the current block. 
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Figure 3.14 ECB and adding salt 
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Figure 3.15 ECB and CBC 

3.9 Private-key encryption 

Private-key (or secret-key) encryption techniques use a secret key which is only 

known by the two communicating parties, as illustrated in Figure 3.16. This key can 

generated by a phase-phase, or can be passed from the two parties over a secure 

communications link. The most popular private-key techniques include: 
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 DES. DES (Data Encryption Standard) is a block cipher scheme which operates 

on 64-bit block sizes. The private key has only 56 useful bits, as eight of its bits 

are used for parity (which gives 256 or 1017 possible keys). DES uses a complex se-

ries of permutations and substitutions, the result of these operations is XOR’ed 

with the input. This is then repeated 16 times using a different order of the key 

bits each time. DES is a strong code and has never been broken, although several 

high-powered computers are now available which, using brute force, can crack 

the code. A possible solution is 3DES (or triple DES) which uses DES three times 

in a row. First to encrypt, next to decrypt and finally to encrypt. This system al-

lows a key-length of more than 128 bits. The technique uses two keys and three 

executions of the DES algorithm. A key, K1, is used in the first execution, then K2 

is used and finally K1 is used again. These two keys give an effective key length of 

112 bits, that is 2 64 key bits minus 16 parity bits. The Triple DES process is illus-

trated in Figure 3.17. 

 RC4. RC4 is a stream cipher designed by RSA Data Security, Inc and was a secret 

until information on it appeared on the Internet. The secure socket layer (SSL) 

protocol and wireless communications (IEEE 802.11a/b/g) use RC4. It uses a 

pseudo random number generator, where the output of the generator is XOR’ed 

with the plaintext. It is a fast algorithm and can use any key-length. Unfortunate-

ly the same key cannot be used twice. Recently a 40-bit key version was broken in 

eight days without special computer power.  

 AES/Rijndael. AES (Advanced Encryption Standard) is a new standard for en-

cryption, and uses 128, 192 or 256 bits. It was selected by NIST in 2001 (after a 

five year standardisation process). The name Rijndael comes from its Belgium 

creators: Joan Daemen and Vincent Rijmen. The future of wireless systems (WPA-

2) is likely to be based around AES (while WPA uses TKIP which is a session key 

method which is based around stream encryption using RC4). 

 IDEA. IDEA (International Data Encryption Algorithm) is similar to DES. It op-

erates on 64-bit blocks of plaintext, using a 128-bit key, and has over 17 rounds 

with a complicated mangler function. During decryption this function does not 

have to be reversed and can simply be applied in the same way as during encryp-

tion (this also occurs with DES). IDEA uses a different key expansion for 

encryption and decryption, but every other part of the process is identical. The 

same keys are used in DES decryption, but in the reverse order. The key is de-

vised in eight 16-bit blocks; the first six are used in the first round of encryption 

the last two are used in the second run. It is free for use in non-commercial ver-

sion and appears to be a strong cipher. 

 RC5. RC5 is a fast block cipher designed by Rivest for RSA Data Security. It has a 

parameterized algorithm with a variable block size (32, 64 or 128 bits), a variable 

key size (0 to 2048 bits) and a variable number of rounds (0 to 255). It has a heavy 

use of data dependent rotations, and the mixture of different operations, which 

assures that RC5 is secure. 

 

The major advantage that private-key encryption has over public-key is that it is typ-

ically much faster to decrypt, and can thus be used where a fast conversion is 

required, such as in real-time encryption. 
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 Web link:  http://buchananweb.co.uk/security07.aspx [3DES] 

 Web link:  http://buchananweb.co.uk/security06.aspx [RC2] 

 Web link:  http://buchananweb.co.uk/security15.aspx [AES/Rijndael] 
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Figure 3.16 Private key encryption/decryption process 
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Figure 3.17 Triple DES process 

3.10 Encryption classes 
The .NET environment provides a number of cryptography classes. A good method 

is to use a code wrapper, which provides a simple method of accessing these classes 

[1]. It provides encryption algorithms such as DES, 3DES and BlowFish, and also 

hash algorithms such as MD5 and SHA (which will be covered in Chapter 4). The 

following is a simple example using the 3DES algorithm: 

 
using System; 
using XCrypt; 
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp 
namespace encryption 
{ 
 class MyEncryption 

http://buchananweb.co.uk/security07.aspx
http://buchananweb.co.uk/security06.aspx
http://buchananweb.co.uk/security15.aspx
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 { 
  static void Main(string[] args) 
  { 
   XCryptEngine xe = new XCryptEngine();  
   xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES); 
// Other algorithms are: 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.BlowFish); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.Twofish); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.DES); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.MD5); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.RC2); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.Rijndael); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA256); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA384); 
//   xe.InitializeEngine(XCryptEngine.AlgorithmType.SHA512); 
 
   xe.Key = "MyKey";  // Define the public key 
   Console.WriteLine("Enter string to encrypt:");  
   string inText = Console.ReadLine(); 
   string encText = xe.Encrypt(inText); 
   string decText = xe.Decrypt(encText); 
   Console.WriteLine("Input: {0}\r\nEncr: {1}\r\nDecr: {2}", 
                inText,encText,decText); 
   Console.ReadLine(); 
  } 
 } 
} 

 

A sample run with 3DES gives: 

 
Enter string to encrypt: 
test 
Input: test 
Encr: uVZLHJ3Wr8s= 
Decr: test 

 

By changing the method to SHA-1 (SHA) gives: 

 
Enter string to hash: test 
Input: test 
Hash: qUqP5cyxm6YcTAhz05Hph5gvu9M= 

 

The code for this simple example is available at: 

 

http://buchananweb.co.uk/encryption.zip 

3.10.1 Key interchange 

The major problem of private-key encryption is how to pass the key between Bob 

and Alice, without Eve listening (Figure 3.18). This problem was solved by Whitfield 

Diffie in 1975, who created the Diffie-Hellman method. With this method, Bob and 

Alice generate two random values, and perform some calculations (Figure 3.16 and 

Figure 3.19), and pass the result of the calculations to each other (Figure 3.20). Once 

these values have been received at either end, Bob and Alice will have the same se-

cret key, which Eve cannot compute (without extensive computation). Diffie-

Hellman is used in many applications, such as in VPNs (Virtual Private Networks), 

SSH, and secure FTP. The following shows a trace of a connection to a secure FTP 

site: 

 
STATUS:> Initializing SFTP21 module... 
STATUS:> Resolving host name mysite.com ... 

A text string is 

used to define the 

key as it is easier 

to remember over 

a binary or hexa-

decimal define 

key. 

http://buchananweb.co.uk/encryption.zip
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STATUS:> Host name mysite.com resolved: ip = 1.2.3.4. 
STATUS:>  Connecting to SFTP server ftp1.napier.ac.uk:22 (ip = 1.2.3.4 ) 
                                Key Method: Diffie-Hellman-group1-SHA1 
                                Host Key Algorithm: SSH-RSA 
                                Session Cipher: 192 bit TripleDES-cbc 
                                Session MAC: HMAC-MD5 
                                Session Compressor/Decompressor: ZLIB 
STATUS:> Getting working directory... 
STATUS:>  Home directory: /home/test 

 

Where it can be seen that in this secure FTP transaction, the encryption being used is 

3DES (TripleDES), the message authentication method is HMAC-MD5 (see Section 

4.7) and the key exchange is Diffie-Hellman. Overall Diffie-Hellman has three 

groups: Group 1, Group 3 or Group 5. These determine the size of the prime number 

bases which are used in the key exchange, where Group 5 is more secure than Group 

2, which is more secure than Group 1. 

 

 Web link: http://buchananweb.co.uk/flash_diffie.html 

 Web link: http://buchananweb.co.uk/security02.aspx [Diffie-Hellman example] 

 

 

Private key uses the same 

key for encryption and 

decryption … how does 

Bob send the key to Alice?

Communications

ChannelEncryption Decryption

H&$d. H&$d.

Hello

Bob Alice

Eve

Hello

How do Bob and Alice send 

their private (secret) key 

without Eve getting it?

 

Figure 3.18 Private key encryption 

 

http://buchananweb.co.uk/security02.aspx
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Figure 3.19 Diffie-Helman method 

Bob Alice

Eve

Untrusted 

network

4. A and B 

values 

exchanged

1. Both nodes agree on two values (G and n)

2. Generate a random value (x) 2. Generate a random value (y)

3. A = G
x
 mod n 3. B = G

y
 mod n

5. K1 = B
x
 mod n 5. K2 = A

y
 mod n

K1 and K2 should be the same and are the 

secret key  

Figure 3.20 Diffie-Hellman process  (see http://buchananweb.co.uk/diffie.aspx) 
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A simple .NET program to calculate small values of G and n is: 

 
using System; 
namespace diffie 
{ 
 class Class1 
 { 
  public static Random r= new Random(); 
 
  static void Main(string[] args) 
  { 
   long x,y,A,B,n,G,K1, K2; 
 
   G= 20; 
   n= 99; 
 
   x = random(10)+1; 
   y = random((int)x); 
 
   double val1= Math.Pow((double)G,(double)x); 
   double val2= Math.Pow((double)G,(double)y); 
 
   Math.DivRem((long)val1,n,out A); 
   Math.DivRem((long)val2,n,out B); 
 
   Math.DivRem((long)Math.Pow((double)B,(double)x),n,out K1); 
   Math.DivRem((long)Math.Pow((double)A,(double)y),n,out K2); 
 
   Console.WriteLine("x is {0} and A is {1}",x,A); 
   Console.WriteLine("y is {0} and B is {1}",y,B); 
 
   Console.WriteLine("K1 is: " + K1); 
   Console.WriteLine("K2 is: " + K2); 
   Console.ReadLine(); 
  } 
  public static int random(int max) 
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  { 
   try 
   { 
    return(r.Next(max)); 
   }  
   catch {}; 
   return(0); 
  } 
 } 
} 
 

 

which gives a sample run of:  

 
x is 6 and A is 64 
y is 3 and B is 80 
K1 is: 91 
K2 is: 91 

 

It can be seen that the values of G and n (20 and 99, respectively) are relevantly small 

as larger values will typically overflow the calculations, as the Math.DivRem() meth-

od can only support long integers, whereas many more bits are required to support 

the large values involved, especially with the A and B to the power of x and y, re-

spectively. A run of values of x and y between 1 and 3 shows that the values of K1 

and K2 are the same for these values of G and n (the code for this is in Tutorial 

3.13.5): 

 
x       y       A       B       K1      K2 
1       1       20      20      20      20 
1       2       20      4       4       4 
1       3       20      80      80      80 
2       1       4       20      4       4 
2       2       4       4       16      16 
2       3       4       80      64      64 
3       1       80      20      80      80 
3       2       80      4       64      64 
3       3       80      80      71      71 

 

 Web link: http://buchananweb.co.uk/security02.aspx [Diffie-Hellman demo] 

3.11 Public-key encryption 

Public-key encryption uses two keys: a public one and a private one (Figure 3.22). 

These are generated from extremely large prime numbers, as a value which is the 

product of two large prime numbers is extremely difficult to factorize. The two keys 

are generated, and the public key is passed to the other side, who will then encrypt 

data destined for this entity using this public key. The only key which can decrypt it 

is the secret, private key. A well-known algorithm is RSA, and can be used to create 

extremely large keys. Its stages are: 

 

1. Select two large prime numbers, a and b (each will be roughly 256 bits long). 

The factors a and b remain secret and n is the result of multiplying them togeth-

er. Each of the prime numbers is of the order of 10100. 

 

2. Next, the public-key is chosen. To do this a number e is chosen so that e and (a-

1)(b-1) are relatively prime. Two numbers are relatively prime if they have no 

http://buchananweb.co.uk/security02.aspx
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common factor greater than 1. The public-key is then <e,n> and results in a key 

which is 512 bits long. 

 

3. Next the private key for decryption, d, is computed so that: 

  

  d=e–1 mod [(a-1)(b-1)]  

 

4. The encryption process to ciphertext, c, is then defined by: 

  

  c=me mod n  

 

5.  The message, m, is then decrypted with: 

  

  m=cd mod n  

 

Communications

ChannelEncryption Decryption

Bob
Alice

Eve

Public key

Private key

Public key

Private key

Hello

H&$d.

Hello

B

C

D

A

A. Bob creates the message.

B. Bob encrypts with Alice’s public key 

and sends Alice the encrypted message

C. Alice decrypts with her private key

D. Alice receives the message

 

Figure 3.22 Public-key encryption/decryption process 

 

 Web link: http://buchananweb.co.uk/security18.aspx [Demo of RSA key gen.] 

3.11.1 XML keys 

The following is some .NET code to generate 1024-bit public and private keys: 

 
 System.Security.Cryptography.RSACryptoServiceProvider RSAProvider;  
 RSAProvider = new System.Security.Cryptography.RSACryptoServiceProvider(1024);  
 publicAndPrivateKeys = RSAProvider.ToXmlString(true );  
 justPublicKey = RSAProvider.ToXmlString( false );  
 StreamWriter fs = new StreamWriter("c:\\public.xml");  
 fs.Write(justPublicKey);  
 fs.Close();  
 fs = new StreamWriter("c:\\private.xml");  
 fs.Write(publicAndPrivateKeys);  
 fs.Close();  
 

 

http://buchananweb.co.uk/security18.aspx
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It converts them in an XML format, such as given in Figure 3.21 (which contains both 

the private and public key). In this case, the public key is: 

 

<RSAKeyValue> 

<Modu-

lus>1NtbP2f+I/3AiwKd+QeHhhsnlTkfufLKS4muFruJ8CwIRFhsyo9yoCIVydb6v0VdDtfg3

F10iTGQw6waXy4QQ2LB4utIqASRumqU2cVNBLYkB/p7eHByTm3GAhxvyTOGWPidcbVCrIrYor

9ck9M79syetG7ZEpHd8hy4Qm6BuP8= 

</Modulus>  

  <Exponent>AQAB</Exponent>  

</RSAKeyValue> 

 

 

Figure 3.23 XML-based private key 

 

The code to then read the keys is: 

 
 XmlTextReader xtr = new XmlTextReader("c:\\private.xml");  
 publicAndPrivateKeys=""; // reset keys  
 justPublicKey="";  
 while (xtr.Read())  
 {  
  publicAndPrivateKeys += xtr.ReadOuterXml();  
 }  
 xtr.Close();  
 xtr = new XmlTextReader("c:\\public.xml");  
 while (xtr.Read())  
 {  
  justPublicKey += xtr.ReadOuterXml();  
 }  
 xtr.Close();  

 

and then to encrypt a message (txt) with the public key: 

 
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();  
string txt= tbTxtEncrypt.Text;  
rsa.FromXmlString(justPublicKey);  
byte[] plainbytes = System.Text.Encoding.UTF8.GetBytes(txt);  
byte[] cipherbytes = rsa.Encrypt(plainbytes,false);  
this.tbTxtEncrypted.Text=Convert.ToBase64String(cipherbytes);  
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and then to decrypt with the private key: 

 
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();  
string txt=tbTxtEncrypted.Text;  
rsa.FromXmlString(publicAndPrivateKeys);  
byte[] cipherbytes = Convert.FromBase64String(txt);  
byte[] plainbytes = rsa.Decrypt(cipherbytes,false);  
System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();  
this.tbTxtDecrypt.Text = enc.GetString(plainbytes);  

 

where tbTxtEncryted is the text box for the encrypted text, and tbTxtEncrypt is 

the text box for the text to be encrypted text. Using these keys, a message of “hello” 

becomes: 

 

tPGI0dMBhQdwMNdn2hf/r1WkYsshK4rmfoshIdnWsiknW4ZLOtmC 

gx3tuhoY3SNNP/z4OziigHUEcyp7POyYEPrmAUbC5XZmJZQcHKG+ 

3m2W1woAB09H4GxXK2P4q2BR61gekHoZOjyEMu2Bk7lCtiWYzPv9 

gnubF7JWvfEuYmU= 

 

Public-key encryption is an excellent method of keeping data secure, but it is often 

too slow for real-time communications. Also, we have the problem of distributing the 

public key to the sender. This problem is solved in the next unit by the use of digital 

certificates. 

 

 Web link: http://buchananweb.co.uk/security08.aspx [RSA for ASP.NET] 

 Web link: http://buchananweb.co.uk/security16.aspx {RSA for Windows] 

3.12 One-way hashing 

The concept of one-way hashing will be discussed in more details in the next chapter. 

One-way hashes are used for digital fingerprints and for secure password storage. 

Typical methods are NT hash, MD4, MD5, and SHA-1, and are used to convert 

plaintext into a hash value (Figure 3.24). It has applications in storing passwords, 

such as in Unix/Windows and on Cisco devices (Figure 3.25). A weakness of one-way 

hashing is that the same piece of plaintext will result in the same ciphertext (unless 

some salt is applied). Thus it is possible for an intruder to generate a list of hash val-

ues for a standard dictionary (Figure 3.26), and possibly determine the plaintext 

which makes the one-way hash. A major factor with hash signatures is: 

 

 Collision. This is where another match is found, no matter the similarity of the 

original message. This can be defined as a Collision attack.  

 Similar context. This is where part of the message has some significance to the 

original, and generates the same hash signature. The can be defined as a Pre-

image attack. 

 Full context. This is where an alternative message is created with the same hash 

signature, and has a direct relation to the original message. This is an extension to 

a Pre-image attack. 

 

http://buchananweb.co.uk/security08.aspx
http://buchananweb.co.uk/security16.aspx
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In 2006, for example, it was shown that MD5 can produce a collision within one mi-

nute, whereas it was 18 hours for SHA-1.  

 

 Web link: http://buchananweb.co.uk/security03.aspx [MD5/SHA-1] 

 Web link: http://buchananweb.co.uk/security03a.aspx [MD5/SHA-1] 

 Web link: http://buchananweb.co.uk/security03b.aspx [MD5/SHA-1 with salt] 
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inverse algorithm

Bob
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Hash

fa1bfa14fa13fa12fa10fa1ffa14fa12
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Eve cannot guess 
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Figure 3.24 One-way hashing 

Bob

mypass NT hash

(MD4)
fa1bfa14fa13fa12fa10fa1ffa14fa12

NT-password

hash for Windows 

NT, XP and Vista

Windows login/

authentication

Bob

mypass

Cisco password

storage (MD5)

# config t
(config)# enable secret test

Current configuration : 542 bytes
!
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Router
!
enable secret 5 $1$/Nwk$knsEQYxZVenGjWOGj/TGk0

MD5 encoded 

password
 

Figure 3.25 Application of one-way hashing 

http://buchananweb.co.uk/security03.aspx
http://buchananweb.co.uk/security03a.aspx
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Bob

mypass NT hash

(MD4)
fa1bfa14fa13fa12fa10fa1ffa14fa12

NT-password

hash for Windows 

NT, XP and Vista

Windows login/

authentication

mypast effahd13fa12fa10fgffa1ffa14fa144

mypass fa1bfa14fa13fa12fa10fa1ffa14fa12

mypose ff12189043210954defff0123444512d

test1 aabbfce023215546dfeddd0101001cd

Hashing suffers from dictionary attacks 

where the signatures of well know words are 

stored in a table, and the intruders does a 

lookup on this

 

Figure 3.26 Application of one-way hashing 

3.13 Key entropy 
Encryption key length is only one of the factors that can give a pointer to the security 

of the encryption process. Unfortunately most encryption processes do not use the 

full range of keys, as the encryption key itself is typically generated using an ASCII 

password. For example in wireless systems typically use a pass phase to generate the 

encryption key. Thus for 64-bit encryption, only five alphanumeric characters (40-

bits) are used and 13 alphanumeric characters (104 bits) are used for 128-bits encryp-

tion6. These characters are typically defined from well-know words and phases such 

as: 

 

Nap1 

 

Whereas 128-bit encryption could use: 

 

NapierStaff1 

 

Thus, this approach typically reduces the number of useable keys, as the keys them-

selves will be generated from dictionaries, such as: 

 

About 

Apple 

Aardvark 

 

                                                      
6 In wireless, a 64-bit encryption key is actually only a 40 bit key, as 24 bits is used as an ini-

tialisation vector. The same goes for a 128-bit key, where the actual key is only 104 bits. 
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and keys generated from strange pass phases such as: 

 

xyRg54d 

io2Fddse 

 

will not be common (and could maybe be checked if the standard dictionary pass 

phases did not yield a result. 

 Entropy measures the amount of unpredictability, and in encryption it relates to 

the degree of uncertainty of the encryption process. If all the keys in a 128-bit key 

were equally likely, then the entropy of the keys would be 128 bits. Unfortunately, do 

to the problems of generating keys through pass phrases the entropy of standard 

English can be less than 1.3 bits per character, and it is typically passwords at less 

than 4 bits per character. Thus for a 128-bit encryption key in wireless, and using 

standard English gives a maximum entropy of only 16.9 bits (1.3 times 13), which is 

equivalent, almost to a 17-bit encryption key length. So rather than having 

202,82,409,603,651,670,423,947,251,286,016 (2104) possible keys, there is only 131,072 

(217) keys.  

 As an example, let’s say an organisation uses a 40-bit encryption key, and that the 

organisation has the following possible phases: 

 

Napier, napier, napier1, Napier1, napierstaff, Napierstaff, napierSoc, na-

pierSoC, SoC, Computing, DCS, dcs, NapierAir, napierAir, napierair, 

Aironet, MyAironet, SOCAironet, NapierUniversity, napieruniversity, Na-

pierUni 

 

which gives 20 different phases, thus the entropy is equal to: 

 

 

 

 

 
 

3.4

2log

20log

20log

log)(

10

10

2

2







 NbitsEntropy

 

 

Thus the entropy of the 40-bit code is only 4.3 bits. 

 Unfortunately many password systems and operating systems such as Microsoft 

Windows base their encryption keys on pass-phases, where the private key is pro-

tected by a password. This is a major problem, as a strong encryption key can be 

used, but the password which protects it is open to a dictionary attack, and that the 

overall entropy is low.  

3.14 File encryption 
See on-line lecture 

3.15 Tutorial 



 W.Buchanan 33 

3.14.1  How many keys, in total, are used in the public-key system: 

   (a)  1      (b) 3 

   (c)  2      (d) 4 

 

3.14.2  A typical public-key system is: 

   (a)  IDE     (b) IDA 

   (c)  PGP     (d) IDEA 

 

3.14.3  How many keys, in total, are used in the private-key system: 

   (a)  1      (b)  3 

   (c)  2      (d)  4 

 

3.14.4  A typical private-key system is: 

   (a)  IDE     (b)  IDA 

   (c)  PGP     (d)  IDEA 

 

3.14.5  How many possible keys are there with a 16-bit key: 

   (a)  16      (b) 65,536 

   (c)  256     (d) 4,294,967,296  

 

3.14.6  How many possible keys are there with a 32-bit key: 

   (a)  32      (b) 1,048,576 

   (c)  1024     (d) 4,294,967,296 

 

3.14.7  If it takes 10ns (10×10-9 s) to test a key, determine the amount of time it 

would take, on average, to decrypt a message with a 32-bit key: 

   (a)  21.48 seconds   (b) 43 seconds 

   (c)  21.48 minutes   (d) 43 minutes 

 

3.14.8  Which key does the recipient use to decrypt the main message: 

   (a)  Recipient’s public key  (b)  Recipient’s private key 

   (c)  Sender’s public key   (d)  Sender’s private key 

 

3.14.9  Which key does the recipient use to authenticate the sender: 

   (a)  Recipient’s public key  (b)  Recipient’s private key 

   (c)  Sender’s public key   (d)  Sender’s private key 

 

3.14.10  What bitwise operator is used in encryption, as it always preserves the con-

tents of the in-formation: 

   (a)  Exclusive-OR’ed  (b) AND 

   (c)  NOR     (d) OR 

 

3.14.11  What happens when a bit-stream is Exclusive-OR’ed by the same value, 

twice: 

   (a)  Bit-stream becomes all 0’s (b) Bit-stream becomes all 1’s 

   (c)  Same bit-stream results (d) Impossible to predict 
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3.14.12  If it takes 100 days to crack an encrypted message, and assuming that com-

puting speed increases by 100% each year, determine how long it will take 

to crack the message after two years: 

   (a)  25 days    (b) 44.44... days 

   (c)  50 days    (d) 100 days 

 

3.14.13  If it takes 100 days to crack an encrypted message, and assuming that com-

puting speed increases by 50% each year, determine how long it will take to 

crack the message after two years: 

  ` (a)  25 days    (b) 44.44... days 

   (c)  50 days    (d) 100 days 

 

3.14.14  If there are only 1024 different passwords for a 64-bit encryption key, what 

is the key entropy [Hint: Key Entropy = log2 (X) = log10(X)/ log10(2)] 

   (a)  1024 bits    (b) 10 bits 

   (c)  64 bits    (d) 18,446,744,073,709,551,616 bits 

 

3.14.15  If there are only 4000 different passwords for a 64-bit encryption key, what 

is the key entropy: 

   (a)  64 bits    (b) 11 bits 

   (c)  11.97 bits   (d) 12.2 bits 

 

3.14.16  Using the following link for RSA encryption: 

 

   http://buchananweb.co.uk/security18.aspx 

 

   Enter a value of p=11, q=3. Prove that n becomes 33, PHI is 20, and e could 

be 9, 13, 17, and so on. Keep pressing the [e,n, PHI] button to regenerate a 

new value of e. Why does n and PHI stay the same but e change? 

 

3.14.17  Using the following link for Diffie-Hellman: 

 

   http://buchananweb.co.uk/security02.aspx 

 

   Enter a value of G=40, N=10, Bob X=7 and Alice Y=10, and prove that the re-

sultant key are the same. 

 

3.14.18  Using the following link for Diffie-Hellman: 

 

   http://buchananweb.co.uk/security02.aspx 

 

   Determine the shared keys for the following (the first one has already been 

completed): 

   G  n  Bob(x) Alice(y) Shared-key 

   15  58  6  7  57 

   16  58  7  5   

   8  52  10  11   

http://buchananweb.co.uk/security18.aspx
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3.14.19  Explain why public-key methods tend to be more secure than private-key 

methods. The discussion should include: 

 

• Ease of changing the key. 

• Ease of distribution. 

• Crackability. 

• etc. 

 

3.14.20  Show that it will take 5849 years to search all the keys for a 64-bit encryp-

tion key. Assume it takes 10ns (10×10-9 s) to test a key. How might this time 

be drastically reduced? 

 

 

 

 

 

3.14.21  If it currently takes 1 million years to decrypt a message then complete Ta-

ble 3.7, assuming a 40% increase in computing power each year. 

 

Table 3.7 Time to decrypt a message assuming an increase in computing power 

Year Time to decrypt (years) Year Time to decrypt (years) 

0 1 million 10  

1  11  

2  12  

3  13  

4  14  

5  15  

6  16  

7  17  

8  18  

9  19  

 

3.14.22 The following messages were encrypted using the code mapping: 
 

   Input:   abcdefghijklmnopqrstuvwxyz 

   Encrypted:  mgqoafzbcdiehxjklntqrwsuvy 
 

   (i)  qnv#mxo#oaqjoa#qbct#hattmza 

   (ii)  zjjogva#mxo#fmnasaee#jxa#mxo#mee 

   (iii) oaqjoa#qbct#mx#vjr#bmwa#fcxctbao#qbct#lratqcjx 
 

   Decrypt them and determine the message. (Note that a ‘#’ character has been  

   used as a SPACE character.) 
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3.14.23  The following messages were encrypted using a shifted alphabet. Decrypt 

them by determining the number of shifts. (Note that a ‘#’ character has 

been used as a SPACE character.) 
 

   (i)  XLMW#MW#ER#IBEQTPI#XIBX 

   (ii)  ROVZ#S#KW#NBYGXSXQ#SX#DRO#COK 

   (iii) ZVOKCO#MYWO#AESMU#WI#RYECO#SC#YX#PSBO 

   (iv) IJ#D#YJ#IJO#RVIO#OJ#BJ#OJ#OCZ#WVGG 

 

3.14.24  The following text is a character-mapped encryption. Table 3.1 defines the 

table of letter probabilities, and can be compared with the probabilities in 

the encrypted text. 
 

tzf hbcq boybqtbmf ja ocmctbe tfqzqjejmv jyfl bqbejmrf cn tzbt ocmctbe ncmqben blf 
efnn baafqtfo gv qjcnf. bqv rqwbqtfo ocntjltcjq boofo tj b ncmqbe cn ofnqlcgfo bn 
qjcnf. tzcn qjreo gf mfqflbtfo gv futflqbe firckhfqt kljorqcqm bclgjlqf ntbtcq, 
aljh jtzfl ncmqben qjrkecqm cqtj tzf ncmqbe'n kbtz (qljnn-tbed), aljh wctzcq 
fefqtlcqbe qjhkjqfqtn, aljh lfqjlocqm bqo kebvgbqd hfocb, bqo nj jq. b qjhkblbtjl 
jrtkrtn b zcmz efyfe ca tzf ncmqbe yjetbmf cn mlfbtfl tzbq tzf tzlfnzjeo yjetbmf, 
fenf ct jrtkrtn b ejw. ca tzf qjcnf yjetbmf cn efnn tzbq tzf tzlfnzjeo yjetbmf 
tzfq tzf qjcnf wcee qjt baafqt tzf lfqjyflfo ncmqbe. fyfq ca tzf qjcnf cn mlfbtfl 
tzbq tzcn tzlfnzjeo tzflf blf tfqzqcirfn wzcqz qbq lforqf ctn faafqt. ajl fubhkef, 
futlb gctn qbq gf boofo tj tzf obtb fctzfl tj oftfqt flljln jl tj qjllfqt tzf gctn 
cq flljl.  
 eblmf bhjrqtn ja ntjlbmf blf lfirclfo ajl ocmctbe obtb. ajl fubhkef, nfyfqtv 
hcqrtfn ja zcac irbectv hrncq lfirclfn jyfl ncu zrqolfo hfmgvtfn ja obtb ntjlbmf. 
tzf obtb jqqf ntjlfo tfqon tj gf lfecbgef bqo wcee qjt ofmlbof jyfl tchf (futlb 
obtb gctn qbq benj gf boofo tj qjllfqt jl oftfqt bqv flljln). tvkcqbeev, tzf obtb 
cn ntjlfo fctzfl bn hbmqftcq acfeon jq b hbmqftcq ocnd jl bn kctn jq bq jktcqbe 
ocnd. tzf bqqrlbqv ja ocmctbe nvntfhn ofkfqon jq tzf qrhgfl ja gctn rnfo ajl fbqz 
nbhkef, wzflfbn bq bqbejmrf nvntfh'n bqqrlbqv ofkfqon jq qjhkjqfqt tjeflbqqf. 
bqbejmrf nvntfhn benj kljorqf b ocaaflcqm lfnkjqnf ajl ocaaflfqt nvntfhn wzflfbn b 
ocmctbe nvntfh zbn b ofkfqobgef lfnkjqnf. 
 ct cn yflv ocaacqret (ca qjt chkjnncgef) tj lfqjyfl tzf jlcmcqbe bqbejmrf ncmqbe 
batfl ct cn baafqtfo gv qjcnf (fnkfqcbeev ca tzf qjcnf cn lbqojh). hjnt hftzjon ja 
lforqcqm qjcnf cqyjeyf njhf ajlh ja acetflcqm jl nhjjtzcqm ja tzf ncmqbe.  b mlfbt 
boybqtbmf ja ocmctbe tfqzqjejmv cn tzbt jqqf tzf bqbejmrf obtb zbn gffq qjqyfltfo 
tj ocmctbe tzfq ct cn lfebtcyfev fbnv tj ntjlf ct wctz jtzfl krlfev ocmctbe obtb. 
jqqf ntjlfo cq ocmctbe ct cn lfebtcyfev fbnv tj kljqfnn tzf obtb gfajlf ct cn 
qjqyfltfo gbqd cqtj bqbejmrf. 
 bq boybqtbmf ja bqbejmrf tfqzqjejmv cn tzbt ct cn lfebtcyfev fbnv tj ntjlf. ajl 
fubhkef, ycofj bqo brocj ncmqben blf ntjlfo bn hbmqftcq acfeon jq tbkf bqo b 
kcqtrlf cn ntjlfo jq kzjtjmlbkzcq kbkfl. tzfnf hfocb tfqo tj boo qjcnf tj tzf 
ncmqbe wzfq tzfv blf ntjlfo bqo wzfq lfqjyflfo (nrqz bn tbkf zcnn). rqajltrqbtfev, 
ct cn benj qjt kjnncgef tj oftfqt ca bq bqbejmrf ncmqbe zbn bq flljl cq ct. 
 

 

3.14.25  The following is a piece of character-mapped encrypted text. The  

    common 2-letter words in the text are: 
 

   to it is to in as an 
 

   and the common 3-letter words are: 
 

   for and the 
  

ixq rnecq ja geie bjhhrtqbeiqjtn etg bjhkriqw tqisjwzn qn qyqw qtbwqenqtc. qi qn 
jtq ja ixq aqs iqbxtjmjcqbem ewqen sxqbx fwqtcn fqtqaqin ij hjni ja ixq bjrtiwqqn 
etg ixq kqjkmqn ja ixq sjwmg. sqixjri qi hetv qtgrniwqqn bjrmg tji quqni. qi qn 
ixq jfdqbiqyq ja ixqn fjjz ij gqnbrnn geie bjhhrtqbeiqjtn qt e wqegefmq ajwh ixei 
nirgqtin etg kwjaqnnqjtemn emm jyqw ixq sjwmg bet rtgqwnietg. 
 qt ixq keni, hjni qmqbiwjtqb bjhhrtqbeiqjt nvniqhn iwetnhqiiqg etemjcrq nqctemn. 
jt et etemjcrq iqmqkxjtq nvniqh ixq yjmiecq mqyqm awjh ixq kxjtq yewqqn sqix ixq 
yjqbq nqctem. rtsetiqg nqctemn awjh quiqwtem njrwbqn qenqmv bjwwrki ixqnq nqctemn. 
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qt e gqcqiem bjhhrtqbeiqjt nvniqh e nqwqqn ja gqcqiem bjgqn wqkwqnqtin ixq 
etemjcrq nqctem. ixqnq ewq ixqt iwetnhqiiqg en jtqn etg oqwjn. gqcqiem qtajwheiqjt 
qn mqnn mqzqmv ij fq eaaqbiqg fv tjqnq etg xen ixrn fqbjhq ixq hjni kwqgjhqteti 
ajwh ja bjhhrtqbeiqjtn. 
 gqcqiem bjhhrtqbeiqjt emnj jaaqwn e cwqeiqw trhfqw ja nqwyqbqn, cwqeiqw iweaaqb 
etg emmjsn ajw xqcx nkqqg bjhhrtqbeiqjtn fqisqqt gqcqiem qlrqkhqti. ixq rnecq ja 
gqcqiem bjhhrtqbeiqjtn qtbmrgqn befmq iqmqyqnqjt, bjhkriqw tqisjwzn, aebnqhqmq, 
hjfqmq gqcqiem wegqj, gqcqiem ah wegqj etg nj jt.  

3.16 Software Tutorial 

3.15.1  Prove that the following program can decrypt an encrypted message with 

the correct encryption key, while an incorrect one does not. Change the 

program so that the user enters the encryption key, and also the decryption 

key: 

 
using System; 
using XCrypt; 
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp 
namespace encryption 
{ 
 class MyEncryption 
 { 
  static void Main(string[] args) 
  { 
   XCryptEngine xe = new XCryptEngine();  
   xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES); 
   xe.Key = "MyKey"; 
 
   Console.WriteLine("Enter string to encrypt:");  
   string inText = Console.ReadLine(); 
 
   string encText = xe.Encrypt(inText); 
 
   xe.Key = "test"; // should not be able to decrypt as the key differs 
 
   try 
   { 
    string decText = xe.Decrypt(encText); 
    
    Console.WriteLine("Input: {0}\r\nEncr: {1}\r\nDecr: {2}", 
         inText,encText,decText); 
   }    
   catch { Console.WriteLine("Cannot decrypt");}  ; 
   Console.ReadLine(); 
 
  } 
 } 
} 

 

 Web link:  http://buchananweb.co.uk/srcSecurity/tut4_1.zip 

 

3.15.2  The following program uses a single character as an encryption key, and 

then searches for the encryption key, and displays it. Modify it so that it 

implements a 2-character encryption key, and then a 3-character one:  

 
using System; 
using XCrypt;    
// Program uses XCrypt library from http://www.codeproject.com/csharp/xcrypt.asp 
namespace encryption 
{ 
 class MyEncryption 
 { 
  static void Main(string[] args) 
  { 
   XCryptEngine xe = new XCryptEngine();  
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   xe.InitializeEngine(XCryptEngine.AlgorithmType.TripleDES); 
   xe.Key = "f"; 
   Console.WriteLine("Enter string to encrypt:");  
   string inText = Console.ReadLine(); 
 
   string encText = xe.Encrypt(inText); 
   for (char ch ='a'; ch<='z'; ch++) 
   { 
    try 
    { 
     xe.Key=ch.ToString(); 
     string decText = xe.Decrypt(encText);   
     if (inText==decText) Console.WriteLine("Encryption key found {0}", 
                        xe.Key); 
    }    
    catch {}  ; 
   } 
   Console.ReadLine(); 
  } 
 } 
} 

 

An example test run is: 

 
Enter string to encrypt: 
test 
Encryption key found f 

 

 Web link:  http://buchananweb.co.uk/srcSecurity/tut4_2.zip 

 

3.15.3  The following program implements a basic alphabet shifter. Modify it so 

that it implements a coding mapping system: 

 
using System; 
namespace alpha 
{ 
 class AlphaShift 
 { 
  static void Main(string[] args) 
  { 
   string output = "defghijklmnopqrstuvwxyzabc"; 
   Console.Write("Enter a word to convert: "); 
   string ins = Console.ReadLine(); 
   char [] inp = ins.ToCharArray(); 
   char [] oup = output.ToCharArray(); 
   Console.Write("Converted text is: "); 
   for (int i=0;i<ins.Length;i++) 
   { 
    Console.Write(oup[inp[i]-'a']); 
   } 
   Console.ReadLine(); 
  } 
 } 
} 

 

 Web link:  http://buchananweb.co.uk/srcSecurity/tut4_3.zip 

 

3.15.4  Modify the program in 3.15.3 so that it decodes the encoded output. 

 

3.15.5  The following program uses Diffie-Hellman values of G of 20, and n of 99, 

for values of x and y from 1 to 4 and gives a sample run of: 

 
x       y       A       B       K1      K2 
1       1       20      20      20      20 
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1       2       20      4       4       4 
1       3       20      80      80      80 
2       1       4       20      4       4 
2       2       4       4       16      16 
2       3       4       80      64      64 
3       1       80      20      80      80 
3       2       80      4       64      64 
3       3       80      80      71      71 

 
using System; 
namespace diffie 
{ 
 class Diffie 
 { 
  static void Main(string[] args) 
  { 
   long x,y,A,B,n,G,K1, K2; 
   G= 20;    n= 99; 
   Console.WriteLine("x\ty\tA\tB\tK1\tK2"); 
   for (x=1;x<4;x++) 
    for (y=1;y<4;y++) 
    { 
     double val1= Math.Pow((double)G,(double)x); 
     double val2= Math.Pow((double)G,(double)y); 
     Math.DivRem((long)val1,n,out A); 
     Math.DivRem((long)val2,n,out B); 
     Math.DivRem((long)Math.Pow((double)B,(double)x),n,out K1); 
     Math.DivRem((long)Math.Pow((double)A,(double)y),n,out K2); 
     Console.WriteLine("{0}\t{1}\t{2}\t{3}\t{4}\t{5}",x,y,A, B, K1, K2); 
    } 
    Console.ReadLine(); 
  } 
 } 
} 

 

 Web link:  http://buchananweb.co.uk/srcSecurity/diffie.zip 

 

Modify the program so that the maximum values of x and y are increased, 

and thus determine the maximum values that still produce the same values of 

K1 and K2. 

3.17 Web Page Exercises 

Implement following Web pages using Visual Studio 2008: 

 

3.16.1  http://buchananweb.co.uk/security07.aspx [3DES] 

3.16.2  http://buchananweb.co.uk/security06.aspx [RC2] 

3.16.3  http://buchananweb.co.uk/security15.aspx [AES] 

3.16.4  http://buchananweb.co.uk/security18.aspx [RSA] 

3.18 Network Simulation Tutorial 

3.17.1  On NetworkSims, go to ISCW and select Challenge 28. Create a policy, for 

the router, and determine the options:  

  For encryption:  

  For Hash: 

  For Diffie-Hellman group: 

  For Authentication method: 

  Lifetime range (seconds): 
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An example is given next for the encryption options: 

 
# config t 
(config)# crypto isakmp enable 
(config)# crypto isakmp policy 111 
(config-isakmp)# encryption ? 
  3des  Three key triple DES 
  aes   AES - Advanced Encryption Standard. 
  des   DES - Data Encryption Standard (56 bit keys). 

 

Thus the options are 3DES, AES and DES. 

 

3.17.2  On NetworkSims, go to PIX_SNPA and select Challenge 22. Create a policy, 

for the PIX firewall, and determine the options: 

  For encryption:  

  For Hash: 

  For Diffie-Hellman group: 

  For Authentication method: 

  Lifetime range (seconds): 

3.19 Challenges 

There are a number of challenges related to cipher coding. These are at: 

 

http://buchananweb.co.uk/security19.aspx [ASCII coding] 

http://buchananweb.co.uk/security19a.aspx [Bible codes] 

http://buchananweb.co.uk/security20.aspx [Alphabet shifting] 

http://buchananweb.co.uk/security21.aspx [Coded messages] 

http://buchananweb.co.uk/security22.aspx [Covert channels] 

http://buchananweb.co.uk/security23.aspx [Watermarks] 

http://buchananweb.co.uk/security25.aspx [Test] 

http://buchananweb.co.uk/security26.aspx [Scrambled alphabet] 

http://buchananweb.co.uk/security27.aspx [Vigenère] 

 

What was your final score? 

 

 

Next complete: http://buchananweb.co.uk/it4u00.aspx 

3.20 On-line Exercises 

The on-line exercise for this chapter are at: 

 

http://buchananweb.co.uk/encryption.html 

3.21 NetworkSims Exercises 

Complete:  

http://buchananweb.co.uk/security19.aspx
http://buchananweb.co.uk/security19a.aspx
http://buchananweb.co.uk/security20.aspx
http://buchananweb.co.uk/security21.aspx
http://buchananweb.co.uk/security22.aspx
http://buchananweb.co.uk/security23.aspx
http://buchananweb.co.uk/security25.aspx
http://buchananweb.co.uk/security26.aspx
http://buchananweb.co.uk/security27.aspx
http://buchananweb.co.uk/it4u00.aspx
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Complete: PIX_SNPA Challenge I1-10 

3.22 Chapter Lecture 

View the lecture at: 

 

http://buchananweb.co.uk/security00.aspx 

 

and select Principles to Encryption [Link]. 

 

http://buchananweb.co.uk/security00.aspx

