
	W.Buchanan	1	

8 Threat Analysis
8 On-line lecture: http://asecuritysite.com/subjects/chapter77

8.1 Objectives
The key objectives of this unit are to:

• Understand the basis steps that an intruder might undertake in an intrusion.
• Provide a background in the usage of vulnerability scanning.
• Outline key current threats, and their operation.
• Provide practical skills in vulnerability analysis.

8.2 Introduction
The previous unit outlined some of the key classifications of threats, while this one
focuses on how to assess vulnerabilities can be assessed. A key factor in this is the
use of evaluation tools such as Nmap and Nessus, which contain a number of tests
which evaluate potential vulnerabilities. Organisations such as US-CERT (US Com-
puter Emergency Response Team) and CVE (Common Vulnerabilities and
Exposures) also maintain databases of vulnerabilities, and their current status, which
are useful in keeping track of current threats, and methodologies which can be used
to overcome them.

8.3 Intruder detection
It is important to know the main stages of an intrusion, so that they can be detected
at an early phase, and to overcome them before they can do any damage. Typically
an intrusion goes through alert phases from yellow, which shows some signs of a po-
tential threat, to red, which involves the potential stealing of data or some form of
abuse. The main phases are defined in Figure 8.1.
 Often it takes some time for an intruder to profit from their activities, and it is
important to put in as many obstacles as possible to slow down their activity. The
slower the intrusion, the more chance there is in detecting the activates, and thus in
thwarting them. Figure 8.1 shows a typical sequence of intrusion, which goes from a
yellow alert (on the outside reconnaissance) to a red alert (for the profit phase).
 Initially an intruder might gain information from outside the network, such as
determining network addresses, or domain names. There are, unfortunately, many
databases which contain this type of information, as the Internet is a global network,
and organisations must register their systems for network addresses and domain
names. Once gained, the intruder could move into an internal reconnaissance phase,
where more specific information could be gained, such as determining the location of
firewalls, subnetworks, network layouts, host/server locations, and so on. It is thus
important that this type of activity is detected, as it is typically a sign of some form of
future intrusion. Key features could be things such as:

2	 		

• A scan of network addresses for a range of hosts on a given subnetwork (ping

sweep).
• A scan of open TCP ports for a range of hosts on a given subnetwork (port scan).
• A scan of a specific TCP port for a range of hosts on a given subnetwork (port

sweep).
• An interrogation of the configuration of network devices.
• Accessing systems configuration files, such as ones which contain user names

and passwords.

Outside
reconnaissance

Inside
reconnaissance

Exploit

FootholdProfit

Intruder gains public information
about the systems, such as DNS and
IP information

Intruder gains more specific
information such as subnet layout, and
networked devices.

Intruder finds a
weakness, such as
cracking a password,
breaching
a firewall, and so on.

Once into the system, the
intruder can then advance
up the privilege levels,

Data stealing, system
damage,
user abuse, and so on.

From code yellow to code
red ...

Eve
(Intruder)

Intrusion
Detection

Intrusion
Detection

Intrusion
Detection

Intrusion
Detection

Figure 8.1 Intrusion pattern

Once the intruder has managed to gain information from the internal network, they
may then use this information to gain a foothold, from which they can exploit. Ex-
ample of this may be:

• Hijacking a user ID which has a default password (such as for the password of

default or password), and then using this to move up the levels of privilege on a
system. Often the administrator has the highest privileges on the system, but is
normally secured with a strong password. An intruder, though, who gains a
foothold on the system, normally through a lower-level account, could then
gleam more information, and move up through the privilege hierarchy.

• Using software flaws to exploit weaknesses, and gain a higher-level privilege to
the system. Software flaws can be intentional, where the writer has created an
exploit which can be used to cause damage. This might include a back-door ex-

	W.Buchanan	3	

ploit, where an intruder could connect into a host through some form of network
connection, or though a virus or worm. A non-intentional one is where the soft-
ware has some form of flaw which was unintentional, but which can be used by
an intruder. Typical types of non-intentional flaws are: validation flaws (where
the program does not check for correct input data); domain flaws (where data
can leak from one program to another); identification flaws (where the program
does not properly identify the requester); and logical problems (where the pro-
gram does not operate correctly with certain logical steps).

One problem with IDS systems is that they cannot investigate encrypted content,
which is setup through an encryption tunnel. These tunnels are often used to keep
data private when using public networks. It is thus important that the usage of en-
cryption tunnels on corporate network should be carefully used, as threats within
them may not be picked-up, and virus/worm scanners and IDS systems will not be
able to decrypt the traffic.

Sweeps

One activity which typically indicates a potential future security breach is sweeping
activities. This typically involves: TCP/UDP sweeps (as illustrated in Figure 8.2); ping
sweeps (as illustrated in Figure 8.3), OS identification, and account scans (Figure 8.4).

A particular threat
is the TCP/UDP port
scanner, which scans for open
ports on a host.

If an intruder finds one, it may try
and connect to it.

Typical scans:
Ping sweeps.
TCP scans.
UDP scans.
OS identification scans.
Account scans.

An open port is in the LISTEN
state.

C:\log>netstat -a
Active Connections
Proto Local Address Foreign Address State
TCP bills:epmap bills:0 LISTENING
TCP bills:microsoft-ds bills:0 LISTENING
TCP bills:1035 bills:0 LISTENING
TCP bills:3389 bills:0 LISTENING

Open port 10?
Open port 11?
..
Open port 8888?

Figure 8.2 TCP/UDP port sweeps

4	 		

A particular threat
is the ping port
scanner, which pings multiple
hosts to see which ones are alive

If an intruder finds one, they may
try and connect to it.

Typical scans:
Ping sweeps.
TCP scans.
UDP scans.
OS identification scans.
Account scans.

Ping 192.168.0.1?
Ping 192.168.0.1?
..
Ping 192.168.0.253?
Ping 192.168.0.254?

Often ping (ICMP) is blocked on
the gateway of the network.

Figure 8.3 Ping sweeps

Typical problems:
Anonymous logins
Using the same password as user ID
Using password as password.
Using root login
Using system default logins
Weak passwords
Well-known passwords
Social Engineering

Typical scans:
Ping sweeps.
TCP scans.
UDP scans.
OS identification scans.
Account scans.

Login anonymous
Login fred fred
Login user password
Login root
Login default

Directory
server

E-Commerce
server

Figure 8.4 Account sweeps

8.4 Vulnerably analysis
US-CERT provides support against cyber attacks and interacts with a wide range of
partners in order to disseminate information on cyber security information to the
public. As part of this US-CERT maintains a database of vulnerabilities (CERT,
2009a), which define unique IDs and names to each vulnerability. Recent examples
include:

	W.Buchanan	5	

• VU#515749. Microsoft Internet Explorer CSS style element vulnerability
• VU#723308. TCP may keep its offered receive window closed.
• VU#545228. Microsoft Office Web Components Spreadsheet ActiveX control vul-

nerability indefinitely (RFC 1122).
• VU#180513. Microsoft Video ActiveX control stack buffer overflow

For each vulnerability, CERT then defines an overview, a description, the impact, a
solution, and also defines the vendors which are affect. For example (CERT, 2009b):

VU#120541: SSL and TLS protocols renegotiation vulnerability
Overview
A vulnerability exists in SSL and TLS protocols that may allow attackers to execute
an arbitrary HTTP transaction.

I. Description
The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols are
commonly used to provide authentication, encryption, integrity, and non-
repudiation services to network applications such as HTTP, IMAP, POP3, LDAP. A
vulnerability in the way SSL and TLS protocols allow renegotiation requests may al-
low an attacker to inject plaintext into an application protocol stream. This could
result in a situation where the attacker may be able to issue commands to the server
that appear to be coming from a legitimate source. According to the Network Work-
ing Group:

The server treats the client's initial TLS handshake as a renegotiation and thus be-
lieves that the initial data transmitted by the attacker is from the same entity as the
subsequent client data.

This issue affects SSL version 3.0 and newer and TLS version 1.0 and newer.

II. Impact
A remote, unauthenticated attacker may be able to inject an arbitrary amount of cho-
sen plaintext into the beginning of the application protocol stream. This could allow
and attacker to issue HTTP requests, or take action impersonating the user, among
other consequences.

III. Solution
Users should contact vendors for specific patch information.

Systems Affected
Vendor Status Date Notified Date Updated
3com Inc Unknown 2009-11-05 2009-11-05
ACCESS Unknown 2009-11-05 2009-11-05

6	 		

NESSUS also maintain a database of vulnerabilities, and their vulnerability scanner
can be used to assess weaknesses within systems. Along with NESSUS, CVE main-
tains a dictionary of publicly known information security vulnerabilities and
exposures, and aims to provide common identifiers enabling data exchange between
differing vendors/tools. An example of a CVE-ID is (CVE, 2009):

CVE-2009-0076
Summary: Microsoft Internet Explorer 7, when XHTML strict mode is used, allows
remote attackers to execute arbitrary code via the zoom style directive in conjunction
with unspecified other directives in a malformed Cascading Style Sheets (CSS)
stylesheet in a crafted HTML document, aka "CSS Memory Corruption Vulnerabil-
ity."
Published: 02/10/2009
CVSS Severity: 9.3 (HIGH)

Vulnerability scanners

There are a number of vulnerability scanner which can be used for penetration test-
ing. These include Nessus and Nmap, whereas tools such as hping can be used to
craft network traffic for evaluations. Nessus uses a Web-based client with a server to
scan for vulnerabilities (Figure 8.5). When defining the scan, a policy is created which
defines the test to be undertaken. Figure 8.6 shows a sample TCP port scan. In can be
seen in this case that the host has a number of open ports, including port 80 (www),
port 123 (ntp) and 445 (cifs).

Nessus Demo Link:
http://buchananweb.co.uk/adv_security_and_network_forensics/nessus/nessus.htm

Figure 8.5 Nessus policy definition

	W.Buchanan	7	

Figure 8.6 Nessus scan report

PORT SCANS. For port scans an intruder may scan certain hosts or every host on a
subnet, to determine the ports which they have open, as certain ports could be used
to gain a foothold on the host. Programs such as nmap, for example, can scan whole
networks looking for open ports. A key objective of Snort is thus to detect this type of
activity. Luckily Snort has a pre-processor rule for this, which acts before other rules.
An example is:

sfportscan: proto { all } memcap { 10000000 } sense_level { low }

where the arguments might include:

• proto. This can be tcp, udp, icmp, ip or all, and are the types of protocol scans to

be detected.
• scan_type. This can be portscan, portsweep, decoy_portscan, distribut-

ed_portscan or all, and defines the scan type to be detected.
• sense_level. This can be low, medium or high, and defines the sensitity of the

portscans. A low sense level detects response errors, such as ICMP unreachables.
Medium sensitivity level detects portscans and filtered portscans (which are
portscans that do not have any responses). High sensitivity level has a lower
threshold than medium and has a longer time window to detect sweeps.

• Memcap. This defines the maximum memory size (in bytes) – this limits the pos-
sibility of buffer overflows.

• Watch_Ip. This defines the hosts that are to be detected.

To save to a file named portscan.log (scan.rule):

preprocessor sfportscan: proto { all } scan_type { all } \
 sense_level { low } logfile { portscan.log }

8	 		

It is always important to understand the ports that are open on a computer, such as
with running NMAP:

C:\> snort -c scan.rule -dev -i 3 -p -l c:\\bill -K ascii
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file scan.rule
,-----------[Flow Config]----------------------
| Stats Interval: 0
| Hash Method: 2
| Memcap: 10485760
| Rows : 4096
| Overhead Bytes: 16388(%0.16)
`--
Portscan Detection Config:
 Detect Protocols: TCP UDP ICMP IP
 Detect Scan Type: portscan portsweep decoy_portscan distributed_portscan
 Sensitivity Level: Low
 Memcap (in bytes): 1048576
 Number of Nodes: 3869
 Logfile: c:\\bill/portscan.log

Tagged Packet Limit: 256

Then for a scan:

C:\> nmap -o -A 192.168.0.1
Starting Nmap 4.20 (http://insecure.org) at 2007-01-09 21:58 GMT Standard Time
Interesting ports on 192.168.0.1:
Not shown: 1695 closed ports
PORT STATE SERVICE
80/tcp open http
8888/tcp open sun-answerbook
MAC Address: 00:0B:44:F5:33:D5 (The Linksys Group)
Nmap finished: 1 IP address (1 host up) scanned in 1.500 seconds

The resulting log then gives the trace of the port sweep and scan:

Time: 08/17-14:41:54.495296
event_ref: 0
192.168.0.3 -> 63.13.134.49 (portscan) TCP Portsweep
Priority Count: 5
Connection Count: 135
IP Count: 43
Scanned IP Range: 63.13.134.49:216.239.59.99
Port/Proto Count: 1
Port/Proto Range: 80:80

Time: 08/17-14:42:52.431092
event_ref: 0
192.168.0.3 -> 192.168.0.1 (portscan) TCP Portsweep
Priority Count: 5
Connection Count: 10
IP Count: 5
Scanned IP Range: 66.249.93.165:192.168.0.7
Port/Proto Count: 3
Port/Proto Range: 80:2869

Time: 08/17-14:42:52.434852
event_ref: 0
192.168.0.3 -> 192.168.0.1 (portscan) TCP Portscan
Priority Count: 5
Connection Count: 9
IP Count: 1
Scanner IP Range: 192.168.0.3:192.168.0.3
Port/Proto Count: 10
Port/Proto Range: 21:636

	W.Buchanan	9	

PING SCANS. With ping scans, the intruder tries to determine the hosts which are ac-
tive on a network. An example of detecting a Window’s ping sweep is:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (
 msg:"ICMP PING Windows"; itype:8; content:"abcdefghijklmnop";
 depth:16; sid:999)

where an ICMP ping packet is detected with the standard contents of “abc….op”. An
example of the contents of a ping request is:

0000 00 0c 41 f5 23 d5 00 15 00 34 02 f0 08 00 45 00 ..A.#... .4....E.
0010 00 3c 10 7c 00 00 80 01 a6 8f c0 a8 01 64 c0 a8 .<.|....d..
0020 01 01 08 00 60 55 04 00 e9 06 61 62 63 64 65 66 `U.. ..abcdef
0030 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijklmn opqrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

And a ping reply:

0000 00 15 00 34 02 f0 00 0c 41 f5 23 d5 08 00 45 00 ...4.... A.#...E.
0010 00 3c 10 7c 00 00 96 01 90 8f c0 a8 01 01 c0 a8 .<.|....
0020 01 64 00 00 68 55 04 00 e9 06 61 62 63 64 65 66 .d..hU.. ..abcdef
0030 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijklmn opqrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

Snort Demo Link:
http://buchananweb.co.uk/adv_security_and_network_forensics/ids01/ids01.htm

OS SCANS. For OS identification the intruder searches hosts for certain machines,
which possibly have an OS weakness, such as searching for Windows 95 machines,
as these tend to have FAT32 file systems which have very little security associated
with them. For account scans, an intruder may scan the user ID’s for weak pass-
words, where the tests are:

• TSeq. This is where SYN packets are sent, and the TCP sequence numbers are

analysed.
• T1. This is a SYN packet with certain options (WNMTE) set is sent to an open

TCP port.
• T2. This is a NULL packet with options (WNMTE) and is sent to an open TCP

port.
• T3. This is a SYN,FIN,PSH,URG packet with options (WNMTE), and sent to an

open TCP port.
• T4. This is an ACK packet with options (WNMTE) and is sent to an open TCP

port.
• T5. This is a SYN packet with options (WNMTE) and is sent to a closed TCP port.
• T6. This is an ACK packet with options (WNMTE) and is sent to a closed TCP

port.
• T7. This is a FIN,PSH,URG packet with options (WNMTE) and is sent to a closed

TCP port.
• PU. This is a packet sent to a closed UDP port.

For example the following is a fingerprint from XP Professional:

10	 		

TSeq(Class=RI%gcd=<8%SI=<2959A&>356%IPID=I)
T1(DF=Y%W=FAF0|402E%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=N)
T3(Resp=N)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=N)

PU(DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

where:

• Resp: defines whether the host responds. Y - for a response, and N - no response.
• DF: defines whether the host responds with a “Don’t Fragment” bit set in re-

sponse. Y - DF was set, N - DF was not set.
• W: defines the acknowledgement sequence number response and is the Window

advertisement size sent by the host. ACK 0 - ack zero, S - ack sequence number,
S++ - ack sequence number + 1.

• Flags: this defines the flags set in response. S = SYN, A = ACK, R = RST, F = FIN,
U = URG, P = PSH.

• Ops: this is the options set for the response. M - MSS, E - Echoed MSS, W - Win-
dow Scale, T - Timestamp, and N - No Option.

For example DF=Y%W=FAF0|402E%ACK=S++%Flags=AS%Ops=MNWNNT

defines that the “Don’t Fragment” bit is set, the Window size is set to FAF0 or 402E,
the acknowledgement sequence number is set to one more than the requesting pack-
et, the flags set to ACK/SYN, with Options of MNWNNT.
 A result from a scan of a Windows 2003 server image gives:

Starting Nmap 5.10BETA1 (http://nmap.org) at 2009-12-29 16:26 GMT Standard
Time
Nmap scan report for 192.168.75.132
Host is up (0.00071s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows RPC
MAC Address: 00:0C:29:0F:71:A3 (VMware)
Device type: general purpose
Running: Microsoft Windows 2003
OS details: Microsoft Windows Server 2003 SP1 or SP2
Network Distance: 1 hop
Service Info: OS: Windows

HOP RTT ADDRESS
1 0.71 ms 192.168.75.132

8.5 Hping
Hping is a vulnerability tool which can be used to generate data packets. It can be
used, for example, to generate SYN packets at regular intervals using the –S option:

napier@ubuntu:~$ sudo hping -S 192.168.75.132 -e eth0

	W.Buchanan	11	

[sudo] password for napier:
HPING 192.168.75.132 (eth0 192.168.75.132): S set, 40 headers + 4 data bytes
[main] memlockall(): Success
Warning: can't disable memory paging!
len=46 ip=192.168.75.132 ttl=128 id=2052 sport=0 flags=RA seq=0 win=0 rtt=69.3 ms
len=46 ip=192.168.75.132 ttl=128 id=2053 sport=0 flags=RA seq=1 win=0 rtt=0.5 ms
len=46 ip=192.168.75.132 ttl=128 id=2054 sport=0 flags=RA seq=2 win=0 rtt=8.9 ms
--- 192.168.75.132 hping statistic ---
7 packets transmitted, 7 packets received, 0% packet loss

which will use random TCP port to connect to. Listening on the eth0 interface gives:

14:03:05.859738 IP ubuntu.local.2714 > 192.168.75.132.0: Flags [S], seq

1222983093:1222983097, win 512, length 4
14:03:05.859975 IP 192.168.75.132.0 > ubuntu.local.2714: Flags [R.], seq 0, ack

1222983098, win 0, length 0
14:03:06.860566 IP ubuntu.local.2715 > 192.168.75.132.0: Flags [S], seq

1026211710:1026211714, win 512, length 4

Which shows that port 0 is used to connect to on the remote host. If a specific port is
require, the –P option is used. For example on port 80:

napier@ubuntu:~$ sudo hping -S 192.168.75.132 -e eth0 -p 80
HPING 192.168.75.132 (eth0 192.168.75.132): S set, 40 headers + 4 data bytes
[main] memlockall(): Success
Warning: can't disable memory paging!
len=46 ip=192.168.75.132 ttl=128 id=2072 sport=80 flags=SA seq=0 win=64240 rtt=11.3 ms
len=46 ip=192.168.75.132 ttl=128 id=2073 sport=80 flags=SA seq=1 win=64240 rtt=0.5 ms
len=46 ip=192.168.75.132 ttl=128 id=2074 sport=80 flags=SA seq=2 win=64240 rtt=0.4 ms
--- 192.168.75.132 hping statistic ---
15 packets transmitted, 15 packets received, 0% packet loss
round-trip min/avg/max = 0.4/1.5/11.3 ms

which gives:

14:04:31.090418 IP ubuntu.local.2222 > 192.168.75.132.www: Flags [S], seq

56776272:56776276, win 512, length 4
14:04:31.092037 IP ubuntu.local.57490 > 192.168.75.2.domain: 34223+ PTR?

132.75.168.192.in-addr.arpa. (45)
14:04:31.093064 IP 192.168.75.132.www > ubuntu.local.2222: Flags [S.], seq 447090437,

ack 56776273, win 64240, options [mss 1460], length 0
14:04:31.093132 IP ubuntu.local.2222 > 192.168.75.132.www: Flags [R], seq 56776273,

win 0, length 0

Hping Demo:
http://buchananweb.co.uk/adv_security_and_network_forensics/hping/hping.htm

8.6 Botnets
One of the most worrying threats is Botnets, which are created with a master control-
ler, and with number installed Bot agents (slaves), which create a Botnet. With this a
Bot agent can be installed on a host, and then wait for control signals from a Bot mas-
ter (Figure 8.7). A study of Torpig over 10 days in 2009 by the Department of
Computer Science, University of California, Santa Barbara (Gross, 2009), found that
there were more than 180,000 infections and gathered over 70 GB of data. This in-
cluded more than 1.2 million IP addresses which contacted the command and control
server. The details sent included the credentials of over 8,310 accounts at 410 differ-

12	 		

ent institutions, included 1,770 PayPal account, with 1,660 unique credit and debit
card numbers.
 A taxonomy of Botnets (Figure 8.18) classifies them in terms of (Trend Micro,
2006):

• Attacking Behaviour. This can be a multitude of attacking behaviours from SYN

floods for a Distributed Denial of Service to identity theft.
• Command and Control (C&C). This is the method that the Botnet master uses to

control the Bot slaves. This can be a centralized model, a P2P-Based C&C model
or a random one.

• Rallying Mechanisms. This defines the way that Bot slaves rally around the
master, and can include hard-coded IP addresses, Dynamic DNS Domain Name
and a Distributed DNS service.

• Communication Protocols. This defines the communication protocol that the Bot
master uses to communicate with the Bots, and includes IRC, HTTP, Instant
Messenger (IM), P2P, and various other protocols.

• Evasion Techniques. This defines the methods that the Bot can use to disguise
their propagation, activation, and storage. This includes HTTP/VoIP tunnelling,
IPv6 tunnelling, and P2P encrypted traffic.

• Other Observable Activities. This includes their activities which identify them-
selves such as their network-based behaviour, their host-based behaviour, and
global correlated behaviours. Typical activities include abnormal system calls,
and trackable DNS queries.

Botnet

Bot Master

Botnet
command

Botnet
access

Control by
proxy

Figure 8.7 Botnets

Torpig, for example, is distributed using Mebroot, which is a rootkit which replaces
the Master Boot Record (MBR), so that it is restarted at boot time. It is typically
downloaded through non-malicious Web sites which have been compromised to in-

	W.Buchanan	13	

clude a piece of JavaScript code which tries to compromise the Web browser. If an
exploit is found, it downloads an executable to the host machine, and runs it. This
installs Mebroot, and hands on the rest of the installation to the file manager (explor-
er.exe). This then loads a kernel driver that integrates with the disk driver (disk.sys),
which gives Mebroot direct access to the hard disk. Once rebooted, Mebroot contacts
its C&C server in order to get malicious modules, which are then stored in the
c:\windows\system32 directory.
 Mebroot contacts its C&C server on a regular basis using encrypted messages.
This C&C server, in the case of Torpig, downloads three malicious DLLs and injects
them into several key applications such as services.exe (Service Control Manager),
Web browsers (Internet Explorer, Mozilla, and so on), FTP clients, instant messengers
(such as Skype and MSN Messenger) and the command line prompt (CMD.EXE).
Torpig is then able to listen to these applications, and pick-off information such as
logins and passwords. It then reports this information back every 20 minutes to the
Torpig C&C server. The method used for the communications is fairly simple, using
HTTP communications with the text XOR-ed with an 8-byte key, and then converted
to Base-64.
 A botnet was used in a UK recent crime (2009), where a user was redirected to a
fake site which stole his bank login details. The data was then passed to a bot in the
UK which did the actual transfer. The trace of the money transfer is then difficult to
determine, as obfuscation is used to hide the destination (Figure 8.9). A key element
of this system is that the bank transfer is done through agents which are based in the
UK, and this looks valid.

Command and
Control (C&C)

Communication
Protocol (P2P,
IRC, HTTP, etc)

Rally
mechanism

Attacking
Behaviour

Bot Bot
Master

Evasion
Method

Observable
Activities

Figure 8.8 Fraud by proxy

14	 		

Botnet

Bot
Master

Real
Bank PLC

Fake
Bank PLC

Redirect

Bank
details

Make a
withdrawl

Remote
Criminal

Gang

Money
transfer

Figure 8.9 Fraud by proxy

8.7 Phishing
A major problem with most types of digital communication, processing and storage
is that it is often difficult to differentiate between a true event or one which has been
falsified. This is mainly because the Internet has been created with protocols which
are neither secure or have any form of authentication. For example the following
email looks as if it is from e-Bay (Figure 8.10). The email address of the sender of the
email has been spoofed in this case, as some email relay systems allow for any email
address to be used in the sender’s field. It is only when the user clicks on the link do
they find that it goes to a Korean Web site, which obviously asks the user to login
with their e-Bay details (which could then be used to breach their e-Bay account).
 It is only by looking at the raw format is there some information on the details of
the email. For example, in the header, the sender of the email has not been verified:

Microsoft Mail Internet Headers Version 2.0
Received: from mer-w2003-6.napier-mail.napier.ac.uk ([146.176.223.1]) by
EVS1.napier-mail.napier.ac.uk with Microsoft SMTPSVC(6.0.3790.1830);
 Wed, 18 Jan 2006 00:17:45 +0000
Received: from pcp0011634462pcs.ivylnd01.pa.comcast.net (Not Veri-
fied[68.38.82.127]) by mer-w2003-6.napier-mail.napier.ac.uk with NetIQ MailMarshal
(v6,1,3,15)
 id <B43cd89280000>; Wed, 18 Jan 2006 00:17:44 +0000
FCC: mailbox://support_id_1779124147875@ebay.com/Sent
Date: Tue, 17 Jan 2006 17:10:39 -0700
From: eBay <support_id_1779124147875@ebay.com>

	W.Buchanan	15	

Valid looking email
address (spoofed!)

Valid looking URL
(but links to different
Site)

C:\>nslookup 218.38.30.15

Name: ns.thundernet.co.kr
Address: 218.38.30.15

C:\>nslookup 218.38.30.15

Name: ns.thundernet.co.kr
Address: 218.38.30.15

Figure 8.10 Spoofed email

This type of email is normally spotted as being fake, but an altogether more difficult
one is where the sender tries to trick the reader into thinking that it was a human
who wrote the email, and is asking them to prompt for some interaction, such as in
Figure 8.9. In this case the text is:

“I have been waiting for quite a long time for you to reply, whith the pay-
ments details . For this reason I will be forced to report you to ebay as , an
upaid item …”

which puts pressure on the reader, as bad feedback is something that most e-Bay us-
ers want to avoid. Along with this the text looks almost like some with sloppy
writing skills (which can be the case in with some e-Bay users).
Some investigation of the HTML in the email gives:

<TD>Thank you for using eBay</TD></TR>
<TR><TD>http://www.ebay.com
</TD></TR></TBODY></TABLE></TD>
<TD width=358><<form method="POST" action="http://www.mailform.cz/en/form.asp">
<input type="hidden" name="mailform_userid" value="38485"><TABLE cellSpacing=0
cellPadding=0 width="99%" border=0><TBODY>

which shows that, rather than going to e-Bay, it goes to a Web server with a CZ do-
main, which will obviously mimic the e-Bay site, and steal a user’s details. After
which, any accesses to e-Bay must be called into doubt.

16	 		

Figure 8.11 Spoofed email

The methods to detect phishing includes improved training for users, and scanning
content for Web links. Particular problems include:

• Any email which requests a username and a password.
• Graphics used to display text.
• Poorly laid-out content.
• IP address in a Web link. Normally a domain name would be used to identity a

Web server, whereas an IP address can identity maliciousness.
• Domain on Web link differs from the sending domain. Normally the receiving

domain for a Web link would relate to the sender (which would be from a trusted
site).

• Graphic content taken from an external site within an email. This can be used by
a malicious site to determine when an email has been read.

• Iframes within HTML content. An <iframe> tag allows external content to be in-
tegrated within a valid page from a trusted site.

For example, an email could have a single pixel graphic as part of the HTML content,
such as:

Where access to the pixel.gif graphic can be traced for the IP address which accessed
it. In this way a spammer could determine the hosts which have successfully read an
email.
 With an IFRAME, content from another site can be inserted into a valid looking
page, from a trusted site. For example:

	W.Buchanan	17	

http://www.dcs.napier.ac.uk/~bill/design_tips409.html

contains an external page has been integrated with an HTML file (Figure 8.10).

<iframe src="http://networksims.com/security52.aspx"
scrolling="no" frameborder="0" style="width:800px;

height:350px"></iframe>

Content
taken
from

another
site

Figure 8.12 IFRAME integration

8.8 Active attacks
Two typical active attacks are buffer overflows, and cross scripting. Buffer overflows
normally involve systems created with software which uses legacy software, espe-
cially C/C++, Perl and CGI script. These types of systems are often open to incorrect
data input, as it is often possible to overrun the buffers used for variables, and thus
write into code areas (or overwrite data parameters). Modern languages such as C#
and Java are less open to this type of attack, as they support the dynamic sizing of
arrays and strings.
 With cross-scripting (XSS), the threat normally relates to injecting scripts from
one level of the system into another. An example of this is SQL injection, where the
SQL commands for the database are fed through the URL of the HTTP call. For ex-
ample a URL may be: http://192.168.75.132/databasesample.asxp, of which the
variable “test” sends a variable straight to a database. Thus the call of:

http://192.168.75.132/databasesample.aspx?test=SELECT%20*%20FROM%20db1

pass the following SQL command directly to the server:

18	 		

SELECT *
FROM db1

Next the following can be used to add a row onto the database:

SELECT * FROM db1

INSERT INTO db1 VALUES ('Bert', 'Smith4','25','25','35')

with:

http://192.168.75.132/databasesample.aspx?test=INSERT%20INTO%20db1%20VALUES%

20('Bert','Smith6', '35','55','95')

to give:

The way to avoid SQL Injection is to filter any input strings, and parse them before
they reach the database.

SQL Injection Demo:
http://buchananweb.co.uk/adv_security_and_network_forensics/cross_script/cross_s
cript.htm

	W.Buchanan	19	

8.9 Inference
Inference involves exploiting database weaknesses using inferences (Figure 1.13). An
indirect attack involves deriving sensitive data from non-sensitive statistics. In the
example in Figure 8.13, the user is not allowed to see the individual marks of stu-
dents, but is allowed to see the average of a number of students. It can be seen that
for three students, and three queries for an average mark of each of each group of
two students, results in the inference of their individual mark. Inference is difficult to
defend against, as there are an almost infinite number of ways that someone may
view data, and the only way to overcome it is to make sure that the queries allowed
on a system is limited to valid ones.
 For example, in the database in Figure 8.13 there are ages of the users in the Ad-
dress table. A search for the average age of two or more users is allowed, but a single
user is not allowed. To breach this the intruder could search for the following aver-
age ages:

Average(Alice,Bob) = 20
Average(Bob,Eve) = 30
Average(Eve,Alice) = 40

Thus we get:
 (A+B)/2=20 [1]
 (B+E)/2=30 [2]
 (E+A)/2=40 [3]

 (A+B)=40 [4]
 (B+E)=60 [5]
 (E+A)=80 [6]

[4]-[5] gives (A+B)-(B+E)= -20
Thus: A-E= -20 [7]

[6]+[7] gives (A+E) + (A-E) = 80+(-20)
Thus 2A = 80
 A = 30

Thus B=10, and E=50 (from [5] and [6]. Thus we can infer that Alice is 30, Bob is 10
and Eve is 50.
 For example an SQL query of the following will reveal the average age of Alice
and Bob:

SELECT avg(age)
FROM address
WHERE Name='Alice' OR Name='Bob'

And gives a result of:

20	 		

20

Figure 8.13 Sample database

Another example could be that users are not allowed to find the total age of all the
users on the database, but the intruder could search for the total of all the male users,
and then the female ones, such as:

SELECT sum(age)
FROM address
WHERE (Gender='M')

Which gives a result of: 70,

Followed by:

SELECT sum(age)
FROM address
WHERE (Gender='F')

Which gives a result of: 60.

A direct attack on a database involves hiding a query with a bogus condition. For
example in the database in Figure 8.13 the searching for an address with a name
might be disallowed, but the following obfuscates the query with a condition which
will always be false (that the person is less than 30 and also greater than 30):

SELECT FullAddress
FROM address
WHERE (Name = 'Bob') OR (Age<30 AND Age>30)

The query will give:

Fake Street

which will give access to privileged information.

	W.Buchanan	21	

 Often a way to overcome the release of data is to limit the number of rows re-
turned. This can be overcome though using multiple accesses. For example the user
could be limited to not showing all the names on a database, and could thus run:

SELECT Name
FROM address
WHERE (Gender='F')

followed by:

SELECT Name
FROM address
WHERE (Gender='M')

which will release all the names on the database.

Applying different levels of database security

Polyinstantiation is used in many applications for security, such as within operating
systems that create new instances of directories, such as for a /tmp folder, and where
the user cannot see the real /tmp folder, or any other instances of them. Within a da-
tabase system Polyinstantiation is used as a way to protect high security entries
where two different row instances have the same name (identifier, primary key). A
relation can thus contain multiple rows using the same primary key, each with dif-
ferent security levels. For example a low security access would be able to access one
row, with did not have sensitive information, while another one could allow access
to a different row with the sensitive information. In Figure 8.14 the Security column
defines security level, with a primary key of Name. In this example the table has two
entries for Bob: one is a low security one without his date of birth, and with an incor-
rect age, where the other one has the correct details and has a high security level.

Figure 8.14 Polyinstantiation

22	 		

8.10 Affiliate scams
The Internet is being used increasingly to sell goods, and adverts are increasingly
being placed on Web pages. In order to do this, the Web page owner may often
charge either for the advert to be placed there, and also to gain commission for any
clicks on the adverts. This can result in click-through fraud, where false clicks can be
made on the advert to generate commission for the provider (Figure 8.15). As there is
increasing need for the provision for adverts, affiliate networks have been created
which have a lead site which has links to a number to a commercial partners, which
they then link with affiliates. This works well for most affiliates, but there is a possi-
bility that a fake affiliate can setup a number of fake Web pages, and then click-
through to generate finance. A typical rate for this is around 50p/click, which could
generate a considerable income with a wide range of fake sites.
 In a large scale scam, there is more money to be gained from commission if the
customer actually follows-through on the purchase, and makes a purchase. For this
the commission gained can be considerable, such as for large-scale commission rates
(such as for a 50% commission rate for a £2000 sale). The scammers then need to have
access to fake IDs and/or stolen credit card details, in order to purchase the goods, or
to apply for a credit card. Along with this the scammer know that IP addresses relat-
ed to non-UK based hosts are unlikely to be allowed to purchase UK-based goods or
a credit card from a UK-based company. Thus the scammer can create proxy agents
(such as from a Botnet) where a UK-based program can create the click on the advert.
An example of the scam is shown in Figure 8.16, where the Affiliate Network host
has a number of customers, which is then promotes to its affiliates. It can be seen that
AffiliateA actually becomes CustA, and thus gains commission from clicks or fake
purchases.

Control by
proxy

Fake
Purchaser

Affiliate
scammer

Can I sell your site
through mines?

15% commission?

Stolen credit card
details used to

purchase

15% commission for every sale

Figure 8.15 Affiliate scam

	W.Buchanan	23	

Affiliate
Network
Host

AffiliateA

AffiliateB

AffiliateC

CustC

CustB

CustA

Figure 8.16 Affiliate scam

8.11 Password cracking programs
Passwords are a typical method used to protect assets and user accounts, but they are
unfortunately often weak as they can often be guessed from a limited range of words
from a standard dictionary. The measure of how strong a password is, is measured
by its entropy.

Key entropy

Encryption key length is only one of the factors that can give a pointer to the security
of the encryption process. Unfortunately most encryption processes do not use the
full range of keys, as the encryption key itself is typically generated using an ASCII
password. For example in wireless systems typically use a pass phase to generate the
encryption key. Thus for 64-bit encryption, only five alphanumeric characters (40-
bits) are used and 13 alphanumeric characters (104 bits) are used for 128-bits encryp-
tion1. These characters are typically defined from well-know words and phases such
as:

Nap1

Whereas 128-bit encryption could use:

1 In wireless, a 64-bit encryption key is actually only a 40 bit key, as 24 bits is used as an ini-
tialisation vector. The same goes for a 128-bit key, where the actual key is only 104 bits.

24	 		

NapierStaff1

Thus, this approach typically reduces the number of useable keys, as the keys them-
selves will be generated from dictionaries, such as:

About
Apple
Aardvark

and keys generated from strange pass phases such as:

xyRg54d
io2Fddse

will not be common (and could maybe be checked if the standard dictionary pass
phases did not yield a result.
 Entropy measures the amount of unpredictability, and in encryption it relates to
the degree of uncertainty of the encryption process. If all the keys in a 128-bit key
were equally likely, then the entropy of the keys would be 128 bits. Unfortunately, do
to the problems of generating keys through pass phrases the entropy of standard
English can be less than 1.3 bits per character, and it is typically passwords at less
than 4 bits per character. Thus for a 128-bit encryption key in wireless, and using
standard English gives a maximum entropy of only 16.9 bits (1.3 times 13), which is
equivalent, almost to a 17-bit encryption key length. So rather than having
202,82,409,603,651,670,423,947,251,286,016 (2104) possible keys, there is only 131,072
(217) keys.
 As an example, let’s say an organisation uses a 40-bit encryption key, and that the
organisation has the following possible phases:

Napier, napier, napier1, Napier1, napierstaff, Napierstaff, napierSoc, na-
pierSoC, SoC, Computing, DCS, dcs, NapierAir, napierAir, napierair,
Aironet, MyAironet, SOCAironet, NapierUniversity, napieruniversity, Na-
pierUni

which gives 20 different phases, thus the entropy is equal to:

()
()
()
()

3.4
2log
20log
20log

log)(

10

10

2

2

=

=

=

= NbitsEntropy

Thus the entropy of the 40-bit code is only 4.3 bits.
 Unfortunately many password systems and operating systems such as Microsoft
Windows base their encryption keys on pass-phases, where the private key is pro-
tected by a password. This is a major problem, as a strong encryption key can be

	W.Buchanan	25	

used, but the password which protects it is open to a dictionary attack, and that the
overall entropy is low.

Hydra – just for research

Hydra is a network password cracking which should only be used to find loopholes
in system, and should never be used to intrude on a system. In the following exam-
ple the Windows VMware image (at 192.168.75.132) contacts the Linux image (at
192.168.75.135) for the FTP service:

C:\hydra-5.4-win> hydra -L login.txt -P passwd.txt 192.168.75.135 ftp
Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only for legal purpos-
es.
Hydra (http://www.thc.org) starting at 2009-12-29 23:10:46
[DATA] 16 tasks, 1 servers, 24 login tries (l:4/p:6), ~1 tries per task
[DATA] attacking service ftp on port 21
[STATUS] attack finished for 192.168.75.135 (waiting for childs to finish)
[21][ftp] host: 192.168.75.135 login: napier password: napier123
Hydra (http://www.thc.org) finished at 2009-12-29 23:10:58

Where login.txt contains a list of user IDs, and passwd.txt contains a list of pass-
words. It can be seen that the password and user ID have been found, as they were in
these files. The verbose mode shows the details of the user IDs and passwords tried:

C:\hydra-5.4-win> hydra -V -L login.txt -P passwd.txt 192.168.75.135 ftp
Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org) starting at 2009-12-29 23:18:46
[DATA] 16 tasks, 1 servers, 24 login tries (l:4/p:6), ~1 tries per task
[DATA] attacking service ftp on port 21
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "anon" - child 0 - 1 of 24
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "napier" - child 1 - 2 of 24
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "fred" - child 2 - 3 of 24
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "none" - child 3 - 4 of 24
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "password" - child 4 – 5 of 24
[ATTEMPT] target 192.168.75.135 - login "admin" - pass "napier123" - child 5 – 6 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "anon" - child 6 - 7 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "napier" - child 7 - 8 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "fred" - child 8 - 9 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "none" - child 9 - 10 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "password" - child 10 – 11 of 24
[ATTEMPT] target 192.168.75.135 - login "test" - pass "napier123" - child 11 - 12 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "anon" - child 12 - 13 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "napier" - child 13 – 14 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "fred" - child 14 - 15 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "none" - child 15 - 16 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "password" - child 0 – 17 of 24
[ATTEMPT] target 192.168.75.135 - login "test1" - pass "napier123" - child 1 – 18 of 24
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "anon" - child 2 - 19 of 24
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "napier" - child 5 – 20 of 24
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "fred" - child 4 - 21 of 24
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "none" - child 6 - 22 of 24
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "password" - child 3 – 2 3 of 24
[STATUS] attack finished for 192.168.75.135 (waiting for childs to finish)
[ATTEMPT] target 192.168.75.135 - login "napier" - pass "napier123" - child 7 - 24 of 24
[21][ftp] host: 192.168.75.135 login: napier password: napier123
Hydra (http://www.thc.org) finished at 2009-12-29 23:18:57

Remember … only use this program on the local NAT.

Hydra Demo:
http://buchananweb.co.uk/adv_security_and_network_forensics/hydra/hydra.htm

26	 		

8.12 Tutorial
The main tutorial is at:

8 On-line tutorial: http://buchananweb.co.uk/adv02.html

8.13 Vulnerability tutorial
Note: The labs in this section require a virtual image defined in Appendix A.

8.1 Run the Windows Server 2003 virtual image (User name: Administrator, Pass-

word: napier). Within the virtual image, run the command prompt and
determine its IP address using ipconfig.

8.2 Run the Linux virtual image (UBUNTU) (User name: napier, Password: na-

pier123). Within the virtual image, run the command prompt and determine its
IP address using ifconfig.

8.3 From WINDOWS2003, run nmap on WINDOWS2003 and UBUNTU, and vice-

versa. Note the services discovered:

Windows Services:

Linux Services:

8.4 From WINDOWS2003, run windump -i 2, and run nmap on UBUNTU.

What can be observed from WINDOWS2003:

8.5 From UBUNTU, run sudo /usr/sbin/tcpdump -i eth0, and run nmap on WIN-

DOWS2003.

What can be observed from UBUNTU:

8.6 From WINDOWS2003, run Nessus, and conduct a port scan of UBUNTU to

discover the services which are running:

	W.Buchanan	27	

Ports open:

8.7 From WINDOWS2003, create a folder named zzzzzzz (where zzzzzzz is your

matriculation number) and create a file in this folder named icmp.rules, and
add:

var EXTERNAL_NET any
var HOME_NET any
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Windows";

itype:8; content:"abcdefghijklmnop";depth:16; sid:999)

 and run Snort on WINDOWS2003 with:

snort -c test.rules -i 2 -p -l c:\\zzzzzzzz -K ascii

 and from UBUNTU, perform a ping on WINDOWS2003.

Did Snort detect the ping scan:

8.8 From WINDOWS2003, create portscan.rules, and add:

var EXTERNAL_NET any
var HOME_NET any
preprocessor sfportscan: proto { all } scan_type { all } sense_level { high

} logfile { portscan.log }

 and run Snort on WINDOWS2003 with:

snort -c test.rules -i 2 -p -l c:\\zzzzzzzz -K ascii

 and from UBUNTU, perform an nmap on WINDOWS2003.

Did Snort detect the port sweep:

8.9 From WINDOWS2003, create a rule which detects an incoming SYN from an-

other host.

8.10 Create a new user on the FTP server in UBUNTU, using (check by viewing the

/etc/passwd file):

sudo useradd fred -p fred -d /home/fred -s /bin/false

28	 		

 Next try and find the password by going to WINDOWS2003, and running hy-

dra, such as:

C:\hydra-5.4-win> hydra -L login.txt -P passwd.txt 192.168.75.x ftp

What modifications where required to detect the user fred:

8.14 SQL injection tutorial
SQL Injection Demo:
http://buchananweb.co.uk/adv_security_and_network_forensics/cross_script/cross_s
cript.htm

8.11 Run the Windows Server 2003 virtual image (User name: Administrator, Pass-

word: napier). Run Visual Web Developer Express 2008, and select Open Web
Site, and select c:\inetput\wwwroot.

8.12 On the Database Explorer, select Connect to Database, and setup as in Figure

8.17.

Figure 8.17 Database connection

8.13 Create a new databasesample.aspx Web page, and add a GridView compo-
nent. Double click on the form, and then add the following code:

	W.Buchanan	29	

 protected void Page_Load(object sender, EventArgs e)

 {

 SqlCommand s = null;

 string param = Request.QueryString["test"];

 mySqlConnection=createConn("Sample");

 mySqlConnection.Open();

 s = new SqlCommand("SELECT * FROM db1", mySqlConnection);

 if (param != null) s = new SqlCommand(param, mySqlConnection);

 SqlDataReader myDataReader = s.ExecuteReader();

 GridView1.DataSource = myDataReader;

 GridView1.DataBind();

 closeConn();

 }

 Next add the following code:

 public SqlConnection mySqlConnection;

 public SqlCommand mySqlCommand;

 public SqlDataReader mySqlDataReader;

 private void closeConn()

 {

 if (mySqlConnection != null)

 {

 if (mySqlConnection.State == ConnectionState.Open)

 {

 mySqlConnection.Close();

 }

 mySqlConnection.Dispose();

 }

 }

 private SqlConnection createConn(string database)

 {

 string mySqlConnectionString =

@"Data Source=NAPIER\SQLEXPRESS;Initial Catalog=Sample;

Integrated Security=True";

 if (mySqlConnection == null) {

 mySqlConnection = new SqlConnection(mySqlConnectionString); };

 return mySqlConnection;

 }

30	 		

8.14 Set databasesample.aspx as the default startup, and press Start Debugging

(F5).

What are the contents of the table:

8.15 Next replace the s = new SqlCommand("SELECT * FROM db1", mySqlConnec-

tion); line with:

 s = new SqlCommand("INSERT INTO db1 VALUES ('Bert',

'Smith4','25','25','35')", mySqlConnection);

 and execute. After this replace the original line, and rerun the code.

What are the contents of the table:

Has a new line been added:

8.16 Next from the Host computer (HOST), access the Web server with:

http://192.168.75.132/databasesample.aspx?test=SELECT%20*%20FROM%20db1

8.17 Next from the Host computer (HOST), access the Web server with:

http://192.168.75.132/databasesample.aspx?test=INSERT%20INTO%20db1%20VALUES%

20('Bert','Smith6', '35','55','95')

followed by:

http://192.168.75.132/databasesample.aspx?test=SELECT%20*%20FROM%20db1

What are the contents of the table:

Has a new line been added:

	W.Buchanan	31	

8.18 Create an SQL injection in calculate the average mark for Test 1, such as for:

 s = new SqlCommand("SELECT avg([Test 1]) FROM db1",
mySqlConnection);

 Test on the local Web server, and then use an SQL injection from a URL. Repeat

for the minimum and maximum mark for Test 1.

8.19 With an SQL injection, change Ian Archibalds mark to 100%.

8.20 Modify the code so that it detects an SQL inject, and identifies the SQL com-

mand used.

8.15 Appendix
The following is the code used in this lab.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data;
using System.Data.Sql;
using System.Data.SqlClient;

public partial class _Default : System.Web.UI.Page
{
 public SqlConnection mySqlConnection;
 public SqlCommand mySqlCommand;
 public SqlDataReader mySqlDataReader;

 private void closeConn()
 {
 if (mySqlConnection != null)
 {
 if (mySqlConnection.State == ConnectionState.Open)
 {
 mySqlConnection.Close();
 }
 mySqlConnection.Dispose();
 }
 }

 private SqlConnection createConn(string database)
 {
 string mySqlConnectionString = @"Data Source=NAPIER\SQLEXPRESS;
Initial Catalog=Sample;Integrated Security=True";

 if (mySqlConnection == null) {
mySqlConnection = new SqlConnection(mySqlConnectionString); };

 return mySqlConnection;
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 mySqlConnection=createConn("Sample");
 mySqlConnection.Open();
 SqlCommand s = new SqlCommand("SELECT * FROM db1", mySqlConnection);

 SqlDataReader myDataReader = s.ExecuteReader();

 GridView1.DataSource = myDataReader;

32	 		

 GridView1.DataBind();

 closeConn();

 }
 protected void Button1_Click(object sender, EventArgs e)
 {

 }
}

