E-Security

- 1. Cryptography Fundamentals.
- 2. Symmetric Key Encryption.
- 3. Hashing and MAC.
- 4. Asymmetric (Public) Key Encryption.
- 5. Key Exchange.
- 6. Trust and Digital Certificates.
- 7. Tunnelling.
- 8. Cryptocurrencies and Blockchain.
- 9. Future Cryptography.
- 10. Host Security.

Prof Bill Buchanan OBE

https://asecuritysite.com/encryption https://asecuritysite.com/esecurity

Disclaimer

- Encryption works great, until it doesn't.
- Encryption works great, as long as no one makes a mistake.
- Encryption works great, unless something goes wrong.
- Encryption works great, as long as everything works right.

Module Delivery

Web site

slack esecurityworkspace.slack.com

@billatnapier

Security site.com + profsims.com - Networksims

asecuritysite.com

github.com/billbuchanan/esecurity

Module Delivery

Lectures/Lab Demos

Draft Timetable

No	Date	Subject	Lab
1	18 Jan 2019	Ciphers and Fundamentals Unit	Lab [Link]
2	25 Jan 2019	Symmetric Key Unit	Lab [Link]
3	1 Feb 2019	Hashing and MAC Unit	Lab [Link]
4	8 Feb 2019	Asymmetric (Public) Key Unit	Lab [Link]
5	15 Feb 2019	Key Exchange Unit	Lab [Link]
6	22 Feb 2019	Guest lecture	Mini-project/Coursework
7	1 Mar 2019	Trust and Digital Certificates Unit	Lab [Link]
8	8 Mar 2019	Tunnelling Unit	Lab [Link]
9	15 Mar 2019	Test 1 (Units 1-7)	
10	22 Mar 2019	Blockchain Unit	Lab [Link]
11	29 Mar 2019	Future Cryptography Unit	Lab [Link]
12	5 April 2019	Host Security 1	
13	12 April 2019	Host Security 2	
Easter Break			
14	29 April 2019 Test 2 (Units 8-12)		
15	6 May 2019	Coursework Hand-in	

Overview

Governance, Auditing, etc

1. Fundamentals

Traditional Ciphers.
Key-based Encryption.
Encoding Methods.
Frequency Analysis.
GCD.
Random Numbers.
Prime Numbers.
Big Integers.
Encryption Operators (MOD, XOR and Shift).

Prof Bill Buchanan OBE

2. Symmetric Key

Basics Block or Stream? Secret Key Methods Salting AES 3DES ChaCha20/Poly1305 Key Entropy

Prof Bill Buchanan OBE

3. Hashing and MAC

Hashing Methods.

Cracking.

Typical Methods: MD5, SHA-1, SHA-3, LM, Bcrypt, PBKDF2

Hashed Passwords.

Timed One Time Passwords.

Message Authentication Codes (MACs).

Prof Bill Buchanan OBE

https://asecuritysite.com/encryption

Bob

4. Asymmetric Key

Principles. RSA. Elliptic Curve. Using Private Key to Authenticate. PGP: Signed Email.

Prof Bill Buchanan OBE

5. Key Exchange

Principles. Diffie-Hellman (DH). Passing the secret key with key exchange. Elliptic Curve Diffie-Hellman (ECDH)

Prof Bill Buchanan OBE

6. Trust and Digital Certificates

Principles.Trust Infrastructures.PKI Infrastructure.Creating Signed Certificates.Signatures (ECDSA, Hashed-based).

Prof Bill Buchanan OBE

7. Tunnelling

SSL/TLS. Key generation/key exchange. SSH. IPSec.

Prof Bill Buchanan OBE

8. Blockchain & Cryptocurrencies

Principles.

Bitcoin.

Ethereum.

Smart Contracts.

Prof Bill Buchanan OBE

9. Future Crypto

Zero knowledge proof. Homomorphic encryption. Light-weight crypto. Quantum-robust cryptography.

Prof Bill Buchanan OBE

E-Security

- 1. Cryptography Fundamentals.
- 2. Symmetric Key Encryption.
- 3. Hashing and MAC.
- 4. Asymmetric (Public) Key Encryption.
- 5. Key Exchange.
- 6. Trust and Digital Certificates.
- 7. Tunnelling.
- 8. Cryptocurrencies and Blockchain.
- 9. Future Cryptography.
- 10. Host Security.

Prof Bill Buchanan OBE

https://asecuritysite.com/encryption https://asecuritysite.com/esecurity

