
Python and Crypto:
Learning With Errors
(LWE) and Ring LWE

Prof Bill Buchanan OBE, The Cyber Academy
http://asecuritysite.com

Learning With Errors
(LWE)

Prof Bill Buchanan OBE, The Cyber Academy
http://asecuritysite.com

Quantum Methods

• Quantum Computers will crack most public key methods, such as RSA and Elliptic Curve
encryption.

• We need new methods which define hard problems which will not be cracked by
quantum computers.

• Lattice-based cryptography [Lattice] – This classification shows great potential and is
leading to new cryptography, such as for fully homomorphic encryption [here], and code
obfuscation. An example is given in the following section.

• Code-based cryptography [McEliece] – This method was created in 1978 with the
McEliece cryptosystem but has barely been using in real applications. The McEliece
method uses linear codes that are used in error correcting codes, and involves matrix-
vector multiplication. An example of a linear code is Hamming code [here].

• Multivariate polynomial cryptography [UOV] – These focus on the difficulty of solving
systems of multivariate polynomials over finite fields. Unfortunately, many of the
methods that have been proposed have already been broken.

• Hash-based signatures [GMSS] – This would involve created digital signatures using
hashing methods. The drawback is that a signer needs to keep a track of all of the
messages that have been signed, and that there is a limit to the number of signatures that
can be produced.

https://asecuritysite.com/encryption/lattice
https://asecuritysite.com/encryption/mce
https://asecuritysite.com/encryption/rain
https://asecuritysite.com/encryption/gmss

LWE

With LWE we use a random matrix (A) secret matrix (s) and an error
matrix (e).

Presentation based on Introduction to post-quantum cryptography and
learning with errors, Summer School on real-world crypto and privacy,
Šibenik, Croatia • June 11, 2018 [Link].

https://summerschool-croatia.cs.ru.nl/2018/slides/Introduction%20to%20post-quantum%20cryptography%20and%20learning%20with%20errors.pdf

LWE

LWE

A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3, 5, 0]])
All operations are (mod q). Let q = 13

4 1 11 10

5 5 9 5

3 9 0 10

1 3 3 2

12 7 3 4

6 5 11 4

3 3 5 0

A

LWE

A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3,
5, 0]])
sA = np.array([[6],[9],[11],[11]])
eA = np.array([[0],[-1],[1],[1],[1],[0],[-1]])

All operations are mod q. q=13

4 1 11 10

5 5 9 5

3 9 0 10

1 3 3 2

12 7 3 4

6 5 11 4

3 3 5 0

6

9

11

11x +

0

-1

1

1

1

0

-1

A sA eA

LWE

q=13
A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3, 5, 0]])
sA = np.array([[6],[9],[11],[11]])
eA = np.array([[0],[-1],[1],[1],[1],[0],[-1]])
bA = np.matmul(A,sA)%q
bA = np.add(bA,eA)%q
print bA

4 1 11 10

5 5 9 5

3 9 0 10

1 3 3 2

12 7 3 4

6 5 11 4

3 3 5 0

6

9

11

11x +

0

-1

1

1

1

0

-1

A sA bA

=

4

7

2

11

5

12

8

eA

LWE - Encrypting

Next we have a single bit message (M) we sample A and B to produce:

! =#$%&'()*%

+ =# ,%&'()*% −
.
2 .1

The encrypted value is then (u,v)

LWE - Decrypting

To decrypt we take (u,v) and calculate:

!"# = % − '()*+ ,

If Dec is less than q/2, the message is 0.
If Dec is greater than q/2, the message is 1.

LWE - Example

Message to send: 0
Public Key (A): [80, 86, 19, 62, 2, 83, 25, 47, 20, 58, 45, 15, 30, 68, 4, 13, 8, 6, 42,
92]
Public Key (B): [15, 45, 2, 20, 13, 30, 32, 45, 4, 3, 34, 78, 55, 51, 23, 67, 44, 34,
17, 75]
Errors (e): [3, 3, 4, 1, 3, 3, 4, 4, 1, 4, 3, 3, 2, 2, 3, 2, 4, 4, 1, 3]
Secret key: 5
Prime number: 97

Sampling [18, 5, 8, 13, 11]
U is 34 V is 83.0 Message is a 0 [Link]

https://asecuritysite.com/encryption/lwe2

Ring Learning With
Errors (Ring-LWE)
Prof Bill Buchanan OBE, The Cyber Academy

http://asecuritysite.com

Ring LWE

Ring LWE

B = A x sA + eA

A = [4,1,11,10]
sA = [6,9,11,11]
eA =[0,-1,1,1]
n=4
xN_1 = [1] + [0] * (n-1) + [1]

Ring LWE

B = A x sA + eA

A = [4,1,11,10]
sA = [6,9,11,11]
eA =[0,-1,1,1]

xN_1 = [1] + [0] * (n-1) + [1]
A = np.floor(p.polydiv(A,xN_1)[1])
bA = p.polymul(A,sA)%q
bA = np.floor(p.polydiv(bA,xN_1)[1])
bA = p.polyadd(bA,eA)%q
bA = np.floor(p.polydiv(bA,xN_1)[1])
print bA

RLW-KEX
• xN_1 = [1] + [0] * (n-1) + [1]
Alice:
• A = np.floor(p.polydiv(A,xN_1)[1])
• bA = p.polymul(A,sA)%q
• bA = np.floor(p.polydiv(sA,xN_1)[1])
• bA = p.polyadd(bA,eA)%q

• sharedAlice = np.floor(p.polymul(sA,bB)%q)
• sharedAlice = np.floor(p.polydiv(sharedAlice,xN_1)[1])%q
• sharedBob = np.floor(p.polymul(sB,bA)%q) s
• sharedBob = np.floor(p.polydiv(sharedBob,xN_1)[1])%q

• xN_1 = [1] + [0] * (n-1) + [1]
Bob:
• sB = gen_poly(n,q)
• eB = gen_poly(n,q)
• bB = p.polymul(A,sB)%q
• bB = np.floor(p.polydiv(sB,xN_1)[1])
• bB = p.polyadd(bB,eB)%q

Python and Crypto:
Learning With Errors
(LWE) and Ring LWE

Prof Bill Buchanan OBE, The Cyber Academy
http://asecuritysite.com

