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Quantum Methods

• Quantum Computers will crack most public key methods, such as RSA and Elliptic Curve 
encryption.

• We need new methods which define hard problems which will not be cracked by 
quantum computers.

• Lattice-based cryptography [Lattice] – This classification shows great potential and is 
leading to new cryptography, such as for fully homomorphic encryption [here], and code 
obfuscation. An example is given in the following section. 

• Code-based cryptography [McEliece] – This method was created in 1978 with the 
McEliece cryptosystem but has barely been using in real applications. The McEliece
method uses linear codes that are used in error correcting codes, and involves matrix-
vector multiplication. An example of a linear code is Hamming code [here]. 

• Multivariate polynomial cryptography [UOV] – These focus on the difficulty of solving 
systems of multivariate polynomials over finite fields. Unfortunately, many of the 
methods that have been proposed have already been broken. 

• Hash-based signatures [GMSS] – This would involve created digital signatures using 
hashing methods. The drawback is that a signer needs to keep a track of all of the 
messages that have been signed, and that there is a limit to the number of signatures that 
can be produced.

https://asecuritysite.com/encryption/lattice
https://asecuritysite.com/encryption/mce
https://asecuritysite.com/encryption/rain
https://asecuritysite.com/encryption/gmss


LWE

With LWE we use a random matrix (A) secret matrix (s) and an error 
matrix (e).

Presentation based on Introduction to post-quantum cryptography and 
learning with errors, Summer School on real-world crypto and privacy, 
Šibenik, Croatia • June 11, 2018 [Link].

https://summerschool-croatia.cs.ru.nl/2018/slides/Introduction%20to%20post-quantum%20cryptography%20and%20learning%20with%20errors.pdf
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LWE 

A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3, 5, 0]])
All operations are (mod q). Let q = 13
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3 9 0 10

1 3 3 2
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6 5 11 4

3 3 5 0
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LWE 

A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3, 
5, 0]])
sA = np.array([[6],[9],[11],[11]])
eA = np.array([[0],[-1],[1],[1],[1],[0],[-1]])

All operations are mod q. q=13
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LWE 

q=13
A=np.array([[4 ,1, 11, 10],[5, 5 ,9 ,5],[3, 9 ,0 ,10],[1, 3 ,3 ,2],[12, 7 ,3 ,4],[6, 5 ,11 ,4],[3, 3, 5, 0]])
sA = np.array([[6],[9],[11],[11]])
eA = np.array([[0],[-1],[1],[1],[1],[0],[-1]])
bA = np.matmul(A,sA)%q
bA = np.add(bA,eA)%q
print bA
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LWE - Encrypting

Next we have a single bit message (M) we sample A and B to produce:

! =#$%&'()*%

+ =# ,%&'()*% −
.
2 .1

The encrypted value is then (u,v)



LWE - Decrypting

To decrypt we take (u,v) and calculate:

!"# = % − '( )*+ ,

If Dec is less than q/2, the message is 0.
If Dec is greater than q/2, the message is 1.



LWE - Example

Message to send: 0 
Public Key (A): [80, 86, 19, 62, 2, 83, 25, 47, 20, 58, 45, 15, 30, 68, 4, 13, 8, 6, 42, 
92] 
Public Key (B): [15, 45, 2, 20, 13, 30, 32, 45, 4, 3, 34, 78, 55, 51, 23, 67, 44, 34, 
17, 75] 
Errors (e): [3, 3, 4, 1, 3, 3, 4, 4, 1, 4, 3, 3, 2, 2, 3, 2, 4, 4, 1, 3] 
Secret key: 5 
Prime number: 97 
-----------------------
Sampling [18, 5, 8, 13, 11] 
U is 34 V is 83.0 Message is a 0 [Link]

https://asecuritysite.com/encryption/lwe2
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Ring LWE

B = A x sA + eA

A = [4,1,11,10]
sA = [6,9,11,11]
eA =[0,-1,1,1]
n=4
xN_1 = [1] + [0] * (n-1) + [1]



Ring LWE

B = A x sA + eA

A = [4,1,11,10]
sA = [6,9,11,11]
eA =[0,-1,1,1]

xN_1 = [1] + [0] * (n-1) + [1]
A = np.floor(p.polydiv(A,xN_1)[1])
bA = p.polymul(A,sA)%q
bA = np.floor(p.polydiv(bA,xN_1)[1])
bA = p.polyadd(bA,eA)%q
bA = np.floor(p.polydiv(bA,xN_1)[1])
print bA



RLW-KEX
• xN_1 = [1] + [0] * (n-1) + [1] 
Alice:
• A = np.floor(p.polydiv(A,xN_1)[1])
• bA = p.polymul(A,sA)%q 
• bA = np.floor(p.polydiv(sA,xN_1)[1]) 
• bA = p.polyadd(bA,eA)%q

• sharedAlice = np.floor(p.polymul(sA,bB)%q) 
• sharedAlice = np.floor(p.polydiv(sharedAlice,xN_1)[1])%q 
• sharedBob = np.floor(p.polymul(sB,bA)%q) s
• sharedBob = np.floor(p.polydiv(sharedBob,xN_1)[1])%q

• xN_1 = [1] + [0] * (n-1) + [1] 
Bob:
• sB = gen_poly(n,q) 
• eB = gen_poly(n,q) 
• bB = p.polymul(A,sB)%q 
• bB = np.floor(p.polydiv(sB,xN_1)[1]) 
• bB = p.polyadd(bB,eB)%q
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