Lab 1: Cipher Fundamentals

Objective: The key objective of this lab is to be introduced to some of the fundamental
principles involved in cryptography, including the usage of Base-64, hexadecimal, the modulus
operator some basic operators (such as AND, OR, X-OR, Rotate Right and Rotate Left), and
prime numbers. This lab also involves cracking puzzles, and which have been added to get you
to think about the methods involved in cipher cracking. You can undertake the additional lab
if you want to further develop your cryptography skills.

Web link (Weekly activities):
https://github.com/billbuchanan/appliedcrypto/tree/main/unit0O1_cipher_fundamentals

Go to vsoc.napier.ac.uk and find your folder (Production->CSN11131). Run your Ubuntu
instance (demo).

Lab demo: https://youtu.be/v6H7IHbIKes (Note that you will be using Ubuntu, while the
demo shows Kali).

A Introduction

No | Description Result
A.l Web link (Is prime?): 91: [Yes] [No]
http://asecuritysite.com/Encryption/testprime | 421: [Yes] [No]
)) 1449: [Yes] [No]
Test for the following prime numbers:
A2 Web link (gcd): 88, 46:
http://asecuritysite.com/Encryption/gcd
105, 35:
Determine the GCD for the following:
A3 Web link (Base-64 convertor): Hello:
http://asecuritysite.com/coding/ascii
Determine the Base 64 and Hex values for the following | hello:
strings:
HELLO:
A4 Web link (Base-64 convertor): bGxveWRz
http://asecuritysite.com/coding/ascii
))) 6E6170696572
Determine the following ASCII strings for these
encoded formats: 01000001 01101110 01101011
01101100 01100101 00110001
00110010 00110011

https://www.youtube.com/watch?v=tIQYpjaELcA
https://youtu.be/v6H7lHblKes
http://asecuritysite.com/Encryption/testprime
http://asecuritysite.com/Encryption/gcd
http://asecuritysite.com/coding/ascii
http://asecuritysite.com/coding/ascii
http://asecuritysite.com/coding/ascii

A5

Using Python, what is the result of 53,431 (mod 453)?

In Python, this is:

print (53431 % 453)

A6

Using Python, what is the results of the following:

print (0x43 | 0x21)
print (0x43 & 0x21)
print (0x43 A 0x21)

Using a pen and paper, prove that these results are
correct.

Results:

A7

Using Python, what is the hex, octal, character, and
binary equivalents of the value of 93:

vall=93

print ("Dec:\t",vall)
print ("Bin:\t",bin(vall)
print ("Hex:\t",hex(vall)
print ("oct:\t",oct(vall)
print ("Char:\t",chr(vall

Results:

A8

JavaScript is often used in cryptography. Using node.js,
repeat A.7.

val=93

console.log(val.tostring(2))
console.log(val.toString(16))
console.log(val.toString(8))
console.log(Sstring.fromCharcode(val))

This program will use node.js. Create a file named
a_08.js and then run with:

node a_08.js

Results:

A9

Using Python, what is the Base-64 conversion for the
string of “crypto”?

import base64
str="crypto”
print base64.b64encode(str)

Result:

A.10

If we use a string of “cryptol”, what do you observe
from the Base64 conversion compared to the result in
the previous question (A.9)?

Observation:

All

Using Python, using a decimal value of 41, determine
the result of a shift left by one bit, a shift left by two
bits, a right shift by one bit, and a right shift by two bits:

Web link (Bit shift):
https://asecuritysite.com/comms/shift

Decimal form: 41
shift left (1):
shift left (2):
Shift right(l):
Shift right(2):

Why would a shift left or
shift right operator not be

used on its own in
cryptography?

Al12

In several cases in cryptography, we try and factorize a
value into its factors. An example is 15, and which has

factors of 5 and 3. Using the Python program defined in
the following link, determine the factors of 432:

Web link (Factorization):
https://asecuritysite.com/encryption/factors

Think of two extremely large values and determine their
factors.

A.13

Another format we can use for our data is compression,
and we can do the compression before or after the
encryption process. One of the most popular methods is
gzip compress, and which uses the LZ method to reduce
the number of bits used. For this we will use node.js.
Create a file named a_13.js and determine what the
following Base64 conversions are when they are
uncompressed (Hint: they are cities of the World):

Web link (Compression):
https://asecuritysite.com/encryption/gzip

Take a string of “abc” and compress it, and now keep

building up the string with the same sequence (such as
“abcabc...”). What do you observe from the length of
the compression string if you use a random characters
of the same length as an input:

eJzzyc9Lyc8DAAgpAmMS=

€JxzS13KycwDAATXAT0=

eJzzSy1XiMwvygYADKUC8A==

Note: The code in this example uses Python 2.7. If you are using Python 3, remember and put
parenthesis around the print statement string, such as print (hex(val)).

B

GCD

GCD is known as the greatest common divisor, or greatest common factor (gcf), and is the
largest positive integer that divides into two numbers without a remain-der. For example, the
GCD of 9 and 15 is 3. It is used many encryption algorithms, and a sample algorithm to
determine the GCD of two values (a and b) is given on:

Web link (GCD): http://asecuritysite.com/encryption/gcd

https://asecuritysite.com/encryption/factors
https://asecuritysite.com/encryption/gzip
http://asecuritysite.com/encryption/gcd

No | Description Result
B.1 | Write a Python program to determine the 4105 and 10:
GCD for the following:

4539 and 6:

B.2 | Two numbers are co-prime if they do not 5435 and 634: Yes/No
share co-factors, apart from 1, which is
gcd(a,b)=1. 5432 and 634: Yes/No

Determine if the following values are co-
prime:

C Modulus and Exponentiation

The mod operator results in the remainder of an integer divide. For example, 31 divided by 8
is 3 remainder 7, thus 31 mod 8 equals 7. Often in cryptography the mod operation uses a prime
number, such as:

Result = value* mod (prime number)

For example, if we have a prime number of 269, and a value of 8 with an x value of 5, the
result of this operation will be:

Result = 8°mod 269 = 219

With prime numbers, if we know the result, it is difficult to find the value of x even though
we have the other values, as many values of x can produce the same result. It is this feature
which makes it difficult to determine a secret value (in this case the secret is Xx).
Exponentiation ciphers use a form of:

C=M®modp

to encrypt and decrypt a message (M) using a key of e and a prime number p.

No | Description Result

C.1 | What is the result of the following: 8% mod 271:

1223 mod 973:

the result of: t0 219?
Mémod p Yes/No

The program should check that p is a prime number.

C.2 | Implement a Python program which will determine Is the result of 8> mod 269 equal

C.3

Now prove the following:
(a) message =5, e=5, p=53. Ans: 51
(b) message =4, e=11, p=79. Ans: 36
(c) message =101, e=7, p=293. Ans: 176

An outline of the Python code is:

message = raw_input('Enter message: ')
e = raw_input('Enter exponent: ')
p = raw_input('Enter prime ')

cipher = (int(message) ** int(e)) % int(p)
print cipher

Have you proven the answers:

(a) Yes/No
(b) Yes/No
(c) Yes/No

Advanced Lab

The rest of the lab are more advanced applications, and are only added for those looking for
additional challenges.

D Simple prime number test

A prime number is a value which only has factors of 1 and itself. Prime numbers are used fairly
extensively in cryptography, as computers struggle to factorize them when they are multiplied
together. The simplest test for a prime number is to divide the value from all the integers from
2 to the value divided by 2. If any of the results leaves no remainder, the value is a prime,
otherwise it is composite. We can obviously improve on this by getting rid of even numbers
which are greater than 2, and also that the highest value to be tested is the square root of the
value.

So, if n = 37, then our maximum value will be Jn , Which, when rounded down is 6. So, we
can try: 2, 3, and 5, of which of none of these divide exactly into 37, so it is a prime number.
Now let’s try 55, we will then be 2, 3, 5 and 7. In this case 5 does divide exactly in 55, so the
value is not prime.

Another improvement we can make is that prime numbers (apart from 2 and 3) fit into the
equation of:
6k +1

where k=0 gives 0 and 1, k=1 gives 5 and 7, k=2 gives 11 and 13, k=3 gives 17 and 19, and
so on. Thus we can test if we can divide by 2 and then by 3, and then check all the numbers

of 6k £ 1 up to Jn.

Web link (Prime Numbers): http://asecuritysite.com/encryption/isprime

No | Description Result
D.1 | Using the equation of 6k £ 1. Determine the | Prime numbers:
prime numbers up to 100:

D.2 | Implement a Python program which will Define the highest prime number
calculate the prime numbers up to 1000: generated:

A prime sieve creates all the prime numbers up to a given limit. It progressively removes
composite numbers until it only has prime numbers left, and it is the most efficient way to
generate a range of prime numbers. The following provides a fast method to determine the
prime numbers up to a give value (test):

import sys
test=1000

if (len(sys.argv)>1):
test=int(sys.argv[1l])

def sieve_for_primes_to(n):
size = n//2

http://asecuritysite.com/encryption/isprime

sieve [1]*size
Timit int(n**0.5)
for i in range(l,1limit):
if sieveli]:
val = 2*i+1
tmp = ((size-1) - i)//val
sieve[i+val::val] = [0]*tmp

return [2] + [i*241 for i, v in enumerate(sieve) if v and i>0]

print (sieve_for_primes_to(test))
No Description Result
D.3 | Implement the Python code given above and | Up to 100:
determine the highest prime number possible
in the following ranges: Up to 1,000:
Up to 5,000:
Up to 10,000:

The Miller-Rabin Test for Primes is an efficient method in testing for a prime number.
Access the following page and download the Python script.

Web link (Miller-Radin):

Using this determine the following:

http://asecuritysite.com/encryption/rabin

No | Description Result
D.4 | Which of the following numbers are prime Is 5 prime? Yes/No
numbers:
Is 7919 prime? Yes/No
Is 858,599,509 prime? Yes/No
Is 982,451,653 prime? Yes/No
Is 982,451,652 prime? Yes/No
E Random numbers

Within cryptography random numbers are used to generate things like encryption keys. If the
generation of these keys could be predicted in some way, it may be possible to guess it. The

two main types of random number generators are:

e Pseudo-Random Number Generators (PRNGs). Repeats after a given time. Fast. They
are also deterministic and periodic, so that the random number generation will eventually

repeat.

http://asecuritysite.com/encryption/rabin

e True Random Number Generators (TRNGS). This method is a true random number such
as for keystroke analysis. It is generally slow but is non-deterministic and aperiodic.

Normally simulation and modelling use PRNG, so that the values generated can be repeated
each time, while cryptography, lotteries, gambling and games use TRNG, as each value which
is selected at random should not repeat or be predictable. In the generation of encryption keys
for public key encryption, a user is typically asked to generate some random activity with their
mouse pointer. The random number is then generated on this activity.

Computer programs often struggle to generate TRNG, and hardware generators are sometimes
used. One method is to generate a random number based on low-level, statistically random
"noise" signals. This includes things like thermal noise, and a photoelectric effect.

Web link (Random number): http://asecuritysite.com/encryption/random

One method of creating a simple random number generator is to use a sequence generator of
the form (Linear Congruential Random Numbers):

X.

i < (@xX;+c)modm

Where a, ¢ and m are integers, and where Xo is the seed value of the series.

If we take the values of a=21, X0=35, c=31 and m=100 we get a series of:

66 17 88 79 90 21 72 43 34 45 76 27 98 89 0 31 82 53

Using this example, we get:

(21x35+31) mod 100 gives 66
(21x66+31) mod 100 gives 17
(21x17+31) mod 100 gives 88

and so on.
Web link (Linear congruential): http://asecuritysite.com/encryption/linear
No Description Result
E.1 | Implement the Python code given above. Does it generate this sequence?
Using: a=21, seed=35, c=31, and m=100, Yes/No

prove that the sequence gives 66 17 88 79 90

E.2 | Determine the sequence for: First four numbers of sequence?

a=22, seed=35, c=31, and m=100.

E.3 | Determine the sequence for: First four numbers of sequence?

a=954,365,343, seed=436,241,
¢=55,119,927, and m=1,000,000.

http://asecuritysite.com/encryption/random
http://asecuritysite.com/encryption/linear

E.4 | Determine the sequence for: First four numbers of sequence?

a=2,175,143, seed=3553, ¢=10,653, and
m=1,000,000.

Xoroshiro128+ is one of the fastest Pseudorandom number generators (PRNGS). It was
created in 2016 by David Blackman and Sebastiano Vigna and requires two 64-bit unsigned
integers as seeds:

https://asecuritysite.com/encryption/xoro
Using the Python program to select Head or Tails, create a run for 500 tosses (perhaps

running it a few times and noting the balance of Heads and Tails), and show that program is
unlikely to be biased towards Heads or Tails?

F What | should have learnt from this lab?

The key things learnt:

e Some fundamental principles around number and character formats, including binary,
hexadecimal and Base64.

e How to run a Python program and change some of the parameters.

¢ Some fundamentals around prime numbers and mod operations.

Notes

The code can be downloaded from:

git clone https://github.com/billbuchanan/appliedcrypto
If you need to update the code, go into the appliedcrypto folder, and run:
git pull

To install a Python library use:

pip install Tibname

To install a Node.js package, use:

npm install Tibname

Possible solutions

Have a look at: https://asecuritysite.com/esecurity/labcode

Many of the key concepts in cryptography are based on number theory and which is the study
of integers, with a special focus on divisibility. The main classifications for numbers are
integers, rational numbers, real numbers and complex numbers. In maths we define these as:

https://asecuritysite.com/encryption/xoro
https://github.com/billbuchanan/appliedcrypto
https://asecuritysite.com/esecurity/labcode

e Integers can be positive or negative numbers and have no fractional part. They are
represented with the Z symbol {...-2, -1, 0, +1, +2,...}. A special case of this is finite cyclic
group (Zp), and which represents the integer values from 0 to p-1, and where p is a prime
number. This is cyclic as we take (mod p) of our values.

e Rational numbers are fractions (Q).

e Real numbers (R) include both integers and rational numbers, and any other number that
can be used in a comparison.

e Prime numbers (IP) represent the integers which can only be divisible by itself and unity.

e Natural numbers (N) represent positive numbers which are integers {1,2...}.

One of the great advantages of using Python is that it automatically casts to big integers.

10

	Lab 1: Cipher Fundamentals
	A Introduction
	B GCD
	C Modulus and Exponentiation
	Advanced Lab
	D Simple prime number test
	E Random numbers
	F What I should have learnt from this lab?
	Notes
	Possible solutions

