
1

Lab 2: Symmetric Key
Objective: The key objective of this lab is to understand the range of symmetric key methods
used within symmetric key encryption. We will introduce block ciphers, stream ciphers and
padding. The key tools used include OpenSSL, Python and JavaScript. Overall Python 2.7 has
been used for the sample examples, but it should be easy to convert these to Python 3.x.

& Web link (Weekly activities): https://asecuritysite.com/esecurity/unit02

Demo: https://youtu.be/N3UADaXmOik

A OpenSSL
OpenSSL is a standard tool that we used in encryption. It supports many of the standard
symmetric key methods, including AES, 3DES and ChaCha20.

No Description Result
A.1 Use:

openssl list-cipher-commands

openssl version

Outline five encryption methods
that are supported:

Outline the version of OpenSSL:

A.2 Using openssl and the command in the form:

openssl prime –hex 1111

Check if the following are prime
numbers:

42 [Yes][No]
1421 [Yes][No]

A.3 Now create a file named myfile.txt (either use
Notepad or another editor).

Next encrypt with aes-256-cbc

openssl enc -aes-256-cbc -in
myfile.txt -out encrypted.bin

and enter your password.

Use the following command to
view the output file:

cat encrypted.bin

Is it easy to write out or transmit
the output: [Yes][No]

A.4 Now repeat the previous command and add the
–base64 option.

openssl enc -aes-256-cbc -in
myfile.txt -out encrypted.bin –base64

Use following command to view
the output file:

cat encrypted.bin

Is it easy to write out or transmit
the output: [Yes][No]

A.5 Now Repeat the previous command and
observe the encrypted output.

Has the output changed?
[Yes][No]

2

openssl enc -aes-256-cbc -in
myfile.txt -out encrypted.bin –base64

Why has it changed?

A.6 Now let’s decrypt the encrypted file with the
correct format:

openssl enc -d -aes-256-cbc -in
encrypted.bin -pass pass:napier -
base64

Has the output been decrypted
correctly?

What happens when you use the
wrong password?

A.7 Now encrypt a file with Blowfish and see if
you can decrypt it.

Did you manage to decrypt the
file? [Yes][No]

B Padding (AES)
With encryption, we normally use a block cipher, and where we must pad the end blocks to
make sure that the data fits into a whole number of block. Some background material is here:

& Web link (Padding): http://asecuritysite.com/encryption/padding

In the first part of this tutorial we will investigate padding blocks:

No Description Result
B.1 With AES which uses a 256-bit key, what is the

normal block size (in bytes).

Block size (bytes):

Number of hex characters for
block size:

B.2 Go to:

& Web link (AES Padding):
http://asecuritysite.com/encryption/padding

Using 256-bit AES encryption, and a message of
“kettle” and a password of “oxtail”, determine the
cipher using the differing padding methods (you only
need to show the first six hex characters).

If you like, copy and paste the Python code from the
page, and run it on your Kali instance.

CMS:

Null:

Space:

B.3 For the following words, estimate how many hex
characters will be used for the 256-bit AES
encryption:

Number of hex characters:

“fox”:

“foxtrot”:

“foxtrotanteater”:

3

“foxtrotanteatercastle”:

B.4 With 256-bit AES, for n characters in a string, how
would you generalise the calculation of the number
of hex characters in the cipher text.

How many Base-64 characters would be used
(remember 6 bits are used to represent a Base-64
character):

Hex characters:

Base-64 characters:

C Padding (DES)
In the first part of this lab we will investigate padding blocks:

No Description Result
C.1 With DES which uses a 64-bit key, what is the

normal block size (in bytes):

Block size (bytes):

Number of hex characters for
block size:

C.2 Go to:

& Web link (DES Padding):
http://asecuritysite.com/encryption/padding_des

Using 64-bit DES key encryption, and a
message of “kettle” and a password of “oxtail”,
determine the cipher using the differing
padding methods.

If you like, copy and paste the Python code
from the page, and run it on your Kali instance.

CMS:

Null:

Space:

C.3 For the following words, estimate how many
hex characters will be used for the 64-bit key
DES encryption:

Number of hex characters:

“fox”:

“foxtrot”:

“foxtrotanteater”:

“foxtrotanteatercastle”:

C.4 With 64-bit DES, for n characters in a string,
how would you generalise the calculation of the
number of hex characters in the cipher text.

Hex characters:

Base-64 characters:

4

How many Base-64 characters would be used
(remember 6 bits are used to represent a Base-
64 character):

D Python Coding (Encrypting)
In this part of the lab, we will investigate the usage of Python code to perform different
padding methods and using AES. First download the code from:

& Web link (Cipher code): http://asecuritysite.com/cipher01.zip

The code should be:

from Crypto.Cipher import AES
import hashlib
import sys
import binascii
import Padding

val='hello'
password='hello'

plaintext=val

def encrypt(plaintext,key, mode):
 encobj = AES.new(key,mode)
 return(encobj.encrypt(plaintext))

def decrypt(ciphertext,key, mode):
 encobj = AES.new(key,mode)
 return(encobj.decrypt(ciphertext))

key = hashlib.sha256(password).digest()

plaintext = Padding.appendPadding(plaintext,blocksize=Padding.AES_blocksize,mode='CMS')
print "After padding (CMS): "+binascii.hexlify(bytearray(plaintext))

ciphertext = encrypt(plaintext,key,AES.MODE_ECB)
print "Cipher (ECB): "+binascii.hexlify(bytearray(ciphertext))

plaintext = decrypt(ciphertext,key,AES.MODE_ECB)
plaintext = Padding.removePadding(plaintext,mode='CMS')
print " decrypt: "+plaintext

plaintext=val

Now update the code so that you can enter a string and the program will show the cipher text.
The format will be something like:

python cipher01.py hello mykey

where “hello” is the plain text, and “mykey” is the key. A possible integration is:

import sys

if (len(sys.argv)>1):
 val=sys.argv[1]

if (len(sys.argv)>2):
 password=sys.argv[2]

Now determine the cipher text for the following (the first example has already been
completed):

5

Message Key CMS Cipher
“hello” “hello123”

0a7ec77951291795bac6690c9e7f4c0d

“inkwell” “orange”

“security” “qwerty”

“Africa” “changeme”

Now copy your code and modify it so that it implements 64-bit DES and complete the table
(Ref to: http://asecuritysite.com/encryption/padding_des):

Message Key CMS Cipher
“hello” “hello123”

8f770898ddb9fb38

“inkwell” “orange”

“security” “qwerty”

“Africa” “changeme”

Now modify the code so that the user can enter the values from the keyboard, such as with:

cipher=raw_input('Enter cipher:')
password=raw_input('Enter password:')

E Python Coding (Decrypting)
Now modify your coding for 256-bit AES ECB encryption, so that you can enter the cipher
text, and an encryption key, and the code will decrypt to provide the result. You should use
CMS for padding. With this, determine the plaintext for the following (note, all the plain text
values are countries around the World):

CMS Cipher (256-bit AES ECB) Key Plain text
b436bd84d16db330359edebf49725c62

“hello”

4bb2eb68fccd6187ef8738c40de12a6b “ankle”

029c4dd71cdae632ec33e2be7674cc14 “changeme”

d8f11e13d25771e83898efdbad0e522c “123456”

Now modify your coding for 64-bit DES ECB encryption, so that you can enter the cipher text,
and an encryption key, and the code will decrypt to provide the result. You should use CMS
for padding. With this, determine the plaintext for the following (note, all the plain text values
are countries around the World):

CMS Cipher (64-bit DES ECB) Key Plain text
f37ee42f2267458d “hello”

6

67b7d1162394b868 “ankle”

ac9feb702ba2ecc0 “changeme”

de89513fbd17d0dc “123456”

Now update your program, so that it takes a cipher string in Base-64 and converts it to a hex
string and then decrypts it. From this now decrypt the following Base-64 encoded cipher
streams (which should give countries of the World):

CMS Cipher (256-bit AES ECB) Key Plain text
/vA6BD+ZXu8j6KrTHi1Y+w== “hello”

nitTRpxMhGlaRkuyXWYxtA== “ankle”

irwjGCAu+mmdNeu6Hq6ciw== “changeme”

5I71KpfT6RdM/xhUJ5IKCQ== “123456”

PS … remember to add “import base64”.

F Catching exceptions
If we try “1jDmCTD1IfbXbyyHgAyrdg==” with a passphrase of “hello”, we should get a
country. What happens when we try the wrong passphrase?

Output when we use “hello”:

Output when we use “hello1”:

Now catch the exception with an exception handler:

try:
 plaintext = Padding.removePadding(plaintext,mode='CMS')
 print " decrypt: "+plaintext
except:
 print("Error!")

Now implement a Python program which will try various keys for a cipher text input, and
show the decrypted text. The keys tried should be:

["hello","ankle","changeme","123456"]

Run the program and try to crack:

“1jDmCTD1IfbXbyyHgAyrdg==”

7

What is the password:

G Stream Ciphers
The Chacha20 cipher is a stream cipher which uses a 256-bit key and a 64-bit nonce (salt
value). Currently AES has a virtual monopoly on secret key encryption. There would be major
problems, though, if this was cracked. Along with this AES has been shown to be weak around
cache-collision attacks. Google thus propose ChaCha20 as an alternative, and actively use it
within TLS connections. Currently it is three times faster than software-enabled AES and is
not sensitive to timing attacks. It operates by creating a key stream which is then X-ORed with
the plaintext. It has been standardised with RFC 7539.

G.1 We can use node.js to implement ChaCha20:

var chacha20 = require("chacha20");
var crypto = require('crypto');

var keyname="test";
var plaintext = "testing";

var args = process.argv;
if (args.length>1) plaintext=args[2];
if (args.length>2) keyname=args[3];

var key = crypto.createHash('sha256').update(keyname).digest();

var nonce = new Buffer.alloc(8);
nonce.fill(0);

console.log(key);

var ciphertext = chacha20.encrypt(key, nonce, new Buffer.from(plaintext));
console.log("Ciphertext:\t",ciphertext.toString("hex"));
console.log("Decipher\t",chacha20.decrypt(key,

nonce, ciphertext).toString());

If we use a key of “qwerty”, can you find the well-known fruits (in lower case) of the following
ChaCha20 cipher streams:

e47a2bfe646a
ea783afc66
e96924f16d6e

What are the fruits?

What can you say about the length of the cipher stream as related to the plaintext?

How are we generating the key and what is the key length?

What is the first two bytes of the key if we use a pass-phrase of “qwerty”?

8

What is the salt used in the same code?

How would you change the program so that the cipher stream was shown in in Base64?

How many bits will the salt use? You may have to look at the node.js documentation on the
method for this.

G.2 RC4 is a standard stream cipher and can be used for light-weight cryptography. It can

have a variable key size. The following is a node.js implementation:

// RC4

var crypto = require('crypto');

var keyname="test";
var plaintext = "testing";

var args = process.argv;
if (args.length>1) plaintext=args[2];
if (args.length>2) keyname=args[3];

var key = crypto.createHash('sha256').update(keyname).digest();

var cipher = crypto.createCipheriv('rc4', key,'');
var ciphertext = cipher.update(plaintext, 'utf8', 'hex');
console.log("Ciphertext:\t",ciphertext);

var decipher = crypto.createDecipheriv('rc4', key,'');
var text = decipher.update(ciphertext, 'hex','utf8');
console.log("Decipher:\t",text);

For a password of “napier”, find out the fruits used for these RC4 cipher streams:

8d1cc8bdf6da
911adbb2e6dda57cdaad
8907deba

What are the fruits?

What happens to the cipher when you add an IV (salt) string?

For light-weight cryptography, what is the advantage of having a variable key size:

How might we change the program to implement RC4 with a 128-bit key?

9

H Node.js for encryption
Node.js can be used as a back-end encryption method. In the following we use the crypto
module (which can be installed with “npm crypto”, if it has not been installed). The following
defines a message, a passphrase and the encryption method.

var crypto = require("crypto");

function encryptText(algor, key, iv, text, encoding) {

 var cipher = crypto.createCipheriv(algor, key, iv);

 encoding = encoding || "binary";

 var result = cipher.update(text, "utf8", encoding);
 result += cipher.final(encoding);

 return result;
 }

function decryptText(algor, key, iv, text, encoding) {

 var decipher = crypto.createDecipheriv(algor, key, iv);

 encoding = encoding || "binary";

 var result = decipher.update(text, encoding);
 result += decipher.final();

 return result;
 }

var data = "This is a test";
var password = "hello";
var algorithm = "aes256"

#const args = process.argv.slice(3);

#data = args[0];
#password = args[1];
#algorithm = args[2];

console.log("\nText:\t\t" + data);
console.log("Password:\t" + password);
console.log("Type:\t\t" + algorithm);

var hash,key;

if (algorithm.includes("256"))
{
 hash = crypto.createHash('sha256');
 hash.update(password);

 key = new Buffer.alloc(32,hash.digest('hex'),'hex');
}
else if (algorithm.includes("192"))

10

{
 hash = crypto.createHash('sha192');
 hash.update(password);

 key = new Buffer.alloc(24,hash.digest('hex'),'hex');
}

else if (algorithm.includes("128"))
{
 hash = crypto.createHash('md5');
 hash.update(password);

 key = new Buffer.alloc(16,hash.digest('hex'),'hex');
}

const iv=new Buffer.alloc(16,crypto.pseudoRandomBytes(16));

console.log("Key:\t\t"+key.toString('base64'));
console.log("Salt:\t\t"+iv.toString('base64'));

var encText = encryptText(algorithm, key, iv, data, "base64");

console.log("\n================");

console.log("\nEncrypted:\t" + encText);

var decText = decryptText(algorithm, key, iv, encText, "base64");

console.log("\nDecrypted:\t" + decText);

Save the file as “h_01.js” and run the program with:

node h_01.js

Now complete the following table:

Text Pass phrase Type Ciphertext and salt (just define

first four characters of each)
This is a test hello Aes128

France Qwerty123 Aes192

Germany Testing123 Aes256

Now reset the IV (the salt value) to an empty string (“”), and complete the table:

Text Pass phrase Type Ciphertext
This is a test hello Aes128

France Qwerty123 Aes192

Germany Testing123 Aes256

Does the ciphertext change when we have a fixed IV value?

11

Using an Internet search, list ten other encryption algorithms which can be used with
createCipheriv:

I Reflective questions
1. If we have five ‘a’ values (“aaaaa”). What will be the padding value used for 256-bit

AES with CMS:

2. If we have six ‘a’ values (“aaaaaa”). What will be the hex values used for the plain

text:

3. The following cipher text is 256-bit AES ECB for a number of spaces (0x20):

c3f791fad9f9392116b2d12c8f6c4b3dc3f791fad9f9392116b2d12c8f6c4b
3dc3f791fad9f9392116b2d12c8f6c4b3dc3f791fad9f9392116b2d12c8f6c
4b3da3c788929dd8a9022bf04ebf1c98a4e4

What can you observe from the cipher text:

What is the range that is possible for the number of spaces which have been used:

How might you crack a byte stream sequence like this:

4. For ChaCha20, we only generate a key stream. How is the ciphertext then created:

12

J What I should have learnt from this lab?
The key things learnt:

• How to encrypt and decrypt with symmetric key encryption, and where we use a

passphrase to generate the encryption key.
• How padding is used within the encryption and decryption processes.
• The core difference between a block cipher and a stream cipher.

Notes
The code can be downloaded from:

git clone https://github.com/billbuchanan/esecurity

If you need to update the code, go into the esecurity folder, and run:

git pull

To install a Python library use:

pip install libname

To install a Node.js package, use:

npm install libname

Possible solutions
Have a look at: https://asecuritysite.com/esecurity/labcode

