Lab 3: Hashing

Objective: The key objective of this lab is to understand the range of hashing methods used,
analyse the strength of each of the methods, and in the usage of salting. Overall the most
popular hashing methods are: MDS5 (128-bit); SHA-1 (160-bit); SHA-256 (256-bit); SHA-3
(256-bit), berypt (192-bit) and PBKDF2 (256-bit). The methods of berypt, scrypt and PBKDF2
use a number of rounds, and which significantly reduce the hashing rate. This makes the
hashing processes much slower, and thus makes the cracking of hashed passwords more
difficult. We will also investigate the key hash cracking tools such as hashcat and John The
Ripper.

Web link (Weekly activities): https://asecuritysite.com/esecurity/unit03
Open up your Ubuntu instance within vsoc.napier.ac.uk and conduct this lab.
Demo: https://youtu.be/rnTLr61Ubf0

If required, you can check the hashing methods here: https://asecuritysite.com/encryption/js10

A Hashing
In this section we will look at some fundamental hashing methods.
No | Description Result
A.1 | Using (either on your Windows desktop or on
Ubuntu): 03CF5: Isit

Web link (Hashing):
http://asecuritysite.com/encryption/md5 D5862: Isit

Match the hash signatures with their words (“Falkirk”, '
“Edinburgh”, “Glasgow” and “Stirling”). 48E93: Isit

03CF54D8CE19777B12732B8C50B3B66F
D586293D554981ED611AB7B01316D2D5 EE190: Isit

[Falkirk][Edinburgh][Glasgow][Stirling]?

[Falkirk][Edinburgh][Glasgow][Stirling]?

[Falkirk][Edinburgh][Glasgow][Stirling]?

EE19033300A54DF2FA41DB9881B4B723

A2

Repeat Part 1, but now use openssl, such as:

echo -n 'Falkirk' | openssl md5

03CF5: Isit
[Falkirk][Edinburgh][Glasgow][Stirling]?

D5862: Isit
[Falkirk][Edinburgh][Glasgow][Stirling]?

48E93: Isit
[Falkirk][Edinburgh][Glasgow][Stirling]?

EE190: Isit
[Falkirk][Edinburgh][Glasgow][Stirling]?

A.3 | Using: MDS5 hex chars:

Web link (Hashing): SHA-1 hex chars:

http://asecuritysite.com/encryption/md5

.) SHA-256 hex chars:

Determine the number of hex characters in the

following hash signatures. SHA-384 hex chars:
SHA-512 hex chars:
How does the number of hex characters
relate to the length of the hash
signature:

A.4 | For the following /etc/shadow file, determine the The passwords are password, napier,
matching password: inkwell and Ankle123.
bi11:$aprl$wazs/8Tm$jbzmizBct/c2hysERcz3ml Mk .
mike:$aprl$mkfriquI$kx0CL9krmghCuOSHKgp5Q0 Bill’s password
fred:$aprl$ibe/hCib$/k3A4kjpIyC06BUUAPRKSO)
ian:$aprl$0GyPhsLi$jTTzZWOHNS4CT5ZEOYFL]B. Mike’s password:
jane: 1rqOIRBBN$R2pOQHIegTTVNINTst2U7.

Fred’s password:
[Hint: openssl passwd -aprl -salt ZaZS/8TF napier]

Ian’s password:

Jane’s password:

A.5 | From Ubuntu, download the following: Which file(s) have been modified?
Web link (Files):
http://asecuritysite.com/files02.zip
and the files should have the following MD5
signatures:

MD5(1.txt)= 5d41402abc4b2a76h9719d911017c592
MD5(2.txt)= 69faab6268350295550de7d587bc323d
MD5(3.txt)= feaOflf6fede90bd0a925b4194deacll
MD5(4.txt)= d89b56f81cd7h82856231e662429bcf2
A.6 | From Ubuntu, download the following ZIP file: Do the files have different contents?

Web link (PS Files):
http://asecuritysite.com/Tetters.zip

On your Ubuntu instance, you should be able to view
the files by double clicking on them in the file explorer
(as you should have a PostScript viewer installed).

Now determine the MDS5 signature for
them. What can you observe from the
result?

B

Hash Cracking (Hashcat)

No Description Result
B.1 | Run the hashcat benchmark (eg hashcat —b -m | Hash rate for MD5:
0), and complete the following: Hash rate for SHA-1:
Hash rate for SHA-256:
Hash rate for APR1:
B.2 | On Ubuntu, next create a word file (words)
with the words of “napier”, “password” 232DD. . .634C
“Ankle123” and “inkwell” Is it [napier][password][Ankle123][inkwell]?
Using hashcat crack the following MD5 5F4DC...CF99 Isit
signatures (hash1): [napier][password][Ankle123][inkwell]?
232DD5D7274E0D662F36C575A3BD634C 6D587...5FF5 Isit
5F4DCC3B5AA765D61D8327DEB882CF99 [napier] [password] [Ank]e 1 23] [1111(Well]‘7
6D5875265D1979BDADIC8ABF383C5FF5
04013F78ACCFECI9B673005FC6F20698D 04013. . .698D Is it
Command used: hashcat -m 0 hashl [napier][password][Ankle123][inkwell]?
words
B.3 | Using the method used in the first part of this | FEOLD:
tutorial, find crack the following for names of]
fruits (the fruits are all in lowercase): 1F387:
FE01D67A002DFAOF 3AC084298142ECCD 72830:
1F3870BE274F6C49B3E31A0C6728957F
72B302BF297A228A75730123EFEF7C41 8893D:
8893DC16B1B2534BAB7B03727145A2BB
889560D93572D538078CEL578567B91A 88956
B.4 | We have hashed a SHA-256 value of the
following and put it into a file named
file.txt:
106a5842fc5fce6f663176285ed1516dbb
le3d15c05ababl2fdca46d60b539b7
By adding a word of “help” in a word file of
words.txt, prove that the following cracks the
hash (where file.txt contains the hashed
value):
hashcat -m 1400 file.txt words.txt
B.5 | The following is an NTLM hash, for “help”:
0333c27eb4b9401d91fef02a9f74840e
Prove that the following can crack the hash
(where file.txt contains the hashed value):
hashcat -m 1000 file.txt words.txt
B.6 Now crack the following Scottish football teams (all are single words):

635450503029fc2484f1d7eb80da8e25bdc1770e1dd14710c592c8929ba37ee9
b3cb6d04f9ccbhf6dfe08f40c11648360ca421f0c531e69f326a72dc7e80a0912
bc5fb9abe8d5e72eb49cf00b3dbd173chf914835281fadd674d5a2b680e47d50
6acl6a68ac94ca8298c9c2329593a4a4130b6fed2472a98424b7b4019ef1d968

Football teams:

B.7 Rather than use a dictionary, we can use a brute force a hashed password using a
lowercase character set:

hashcat -a 3 -m 1400 file.txt ?1?1?1?21?21?1?1?1 --increment

Using this style of command (look at the hash type and perhaps this is a SHA-256 hash),
crack the following words:

4dc2159bba05da394c3b94c6f54354db1f1f43b321ac4bbdfc2f658237858c70
0282d9b79f42c74c1550b20ff2dd1l6aafc3fe5d8ae9a00b2f66996d0ae882775
47c215b5f70eb9c9b4bcb2c027007d6cf38a899f40d1d1da6922e49308b15b69

Words:

Number of tests for each:

What happens when you take the “--increment” flag away?

B.8 We can focus on given letters, such as where we add a letter or a digit at the end:

hashcat -a 3 -m 1000 file.txt password?l
hashcat -a 3 -m 1000 file.txt password?u
hashcat -a 3 -m 1000 file.txt password?d

Using these commands, crack the following:

7a6c8de8ad7f89b922cc29c9505f58c3
dbOedd04aaac4506f7edab03ac855d56

Note: Remember to try both MD5 (0) and NTLM hash (1000).

Words:

Number of tests for each:

C Hashing Cracking (John The Ripper)

All of the passwords in this section are in lowercase.

No Description Result

C.1 | On Ubuntu, and using John the Ripper, and using a word list with the names
of fruits, crack the following pwdump passwords: Fred:

fred:500:E79E56A8E5C6F8FEAAD3B435B51404EE: SEBE7DFAO74DASEESAE Bert:
F1FAA2BBDE876: ::
bert:501:10EAF413723CBB15AAD3B435B51404EE :CASE025E9893E8CE3D?2
CBF847FC56814:::

C.2 | On Ubuntu, and using John the Ripper, the following pwdump passwords Admin:
(they are names of major Scottish cities/towns):

Fred:
Admin:500:629E2BA1C0338CEOAAD3B435B51404EE:9408CB400B20ABA3DF
ECO54D2B6EESAL: : : Bert:
fred:501:33E58ABB4D723E5EE72C57EF50F76A05 : 4DFC4E7AAG5D71FD4EQ ert:
6D061871CO5F2:::

bert:502:BC2B6A869601E4D9AAD3B435B51404EE: 2D8947D98F0B09A88DC
9FCD6ES46A711: ::

C.3 | On Ubuntu, and using John the Ripper, crack the following pwdump Fred:
passwords (they are the names of animals):

Bert:
fred:500:5A8BBO8EFFOD416AAAD3B435B51404EE : 85A2ED1CA59D0479B1E
3406972AB1928: :: Admin:
bert:501:C6E4266FEBEBD6ASAAD3B435B51404EE :0B9957E8BED733E0350 1min:
C703AC1CDA822:::

admin:502:333CBO06680FAFOA417EAF50CFAC29C3:D2EDBC29463C40E762
97119421D2A707: ::

D LM Hash

The LM Hash is used in Microsoft Windows. For example, for LM Hash:
hashme gives: FA-91-C4-FD-28-A2-D2-57-AA-D3-B4-35-B5-14-04-EE
network gives: D7-5A-34-5D-5D-20-7A-00-AA-D3-B4-35-B5-14-04-EE
napier gives: 12-B9-C5-4F-6F-E0-EC-80-AA-D3-B4-35-B5-14-04-EE

Notice that the right-most element of the hash are always the same, if the password is less
than eight characters. With more than eight characters we get:

networksims gives: D7-5A-34-5D-5D-20-7A-00-38-32-A0-DB-BA-51-68-07
napier123 gives: 67-82-2A-34-ED-C7-48-92-B7-5E-0C-8D-76-95-4A-50

For “hello” we get:

LM: FD-A9-5F-BE-CA-28-8D-44-AA-D3-B4-35-B5-14-04-EE
NTLM: 06-6D-DF-D4-EF-0E-9C-D7-C2-56-FE-77-19-1E-F4-3C

We can check these with a Python script:

import passlib.hash;

string="hello"

print "LM Hash:"+passlib.hash.Imhash.encrypt(string)
print "NT Hash:"+passlib.hash.nthash.encrypt(string)

which gives:

LM Hash:fda95fbeca288d44aad3b435b51404ee
NT Hash:066ddfd4ef0e9cd7c256fe77191ef43c

Web link (LM Hash): http://asecuritysite.com/encryption/Imhash

No Description Result

D.1 | Create a Python script to determine the LM “Napier”
hash and NTLM hash of the following

words: “Foxtrot”

E APR1

The Apache-defined APR1 format addresses the problems of brute forcing an MD5 hash, and
basically iterates over the hash value 1,000 times. This considerably slows an intruder as they
try to crack the hashed value. The resulting hashed string contains “$apr1$” to identify it and
uses a 32-bit salt value. We can use both htpassword and Openssl to compute the hashed
string (where “bill” is the user and “hello” is the password):

htpasswd -nbm bill hello
bil1:$apri$rkwjogm4 $XGWpADBVPYyYpjL/cLOXMc1

openss1 passwd -aprl -salt pPkwjéegM4 hello
$aprl$rkwj6gmM4 $XGWpPADBVPYYpjL/cLOXMcL

We can also create a simple Python program with the passlib library, and add the same salt as
the example above:

import passlib.hash;

salt="Pkwjb6gm4"
string="hello"
print "APR1l:"+passlib.hash.apr_md5_crypt.encrypt(string, salt=salt)

We can created a simple Python program with the passlib library, and add the same salt as the
example above:

| APR1: $aprl$Pkwj6ogm4 $XGWpADBVPYYpjL/cLOXMC

Refer to: http://asecuritysite.com/encryption/aprl

No Description Result
E.1 | Create a Python script to create the APR1 “changeme”:
hash for the following:
“123456”:

Prove them against on-line APR1 generator
(or from the page given above).
“password”

F SHA

While APR1 has a salted value, the SHA-1 hash does not have a salted value. It produces a
160-bit signature, thus can contain a larger set of hashed value than MDS5, but because there is
no salt it can be cracked to rainbow tables, and also brute force. The format for the storage of
the hashed password on Linux systems is:

htpasswd -nbs bill hello
bi11:{SHA}qVvTGHdzF6KLavt4P00gs2a6pQ00=

We can also generate salted passwords with crypt, and can use the Python script of:

import passlib.hash;

salt="8sFt66rz"

string="hello"

print "SHA1:"+pass1ib.hash.shal_crypt.encrypt(string, salt=salt)
print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)
print "SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)

SHA-512 salts start with 6 and are up to 16 chars long.
SHA-256 salts start with 5 and are up to 16 chars long

Which produces:

SHAL:$shal$480000%$8sFt66rz$kT1AZf7IPWRNIACGNZIMXXUVAIKR]
SHA256:$5%rounds=535000$8sFt66rz$.YYUHL27JtcOX8wpjwKf2vM876kLTGZHSHWCBbq9x
D
SHA512:%$6%rounds=656000$8sFt66rz$aMTKQHT160VXF]jiDAsSyNFxn4gRezzZ0ZarxHaK.TcpV
YLpMw6MNnX01yPQUO6SSVmSdmF/VNbvPkkMpOEONVSd5Q1

No Description Result
F.1 | Create a Python script to create the SHA “changeme”:
hash for the following:
“123456”:

Prove them against on-line SHA generator
(or from the page given above).
“password”

G PBKDF2

PBKDF2 (Password-Based Key Derivation Function 2) is defined in RFC 2898 and generates
a salted hash. Often this is used to create an encryption key from a defined password, and where
it is not possible to reverse the password from the hashed value. It is used in TrueCrypt to
generate the key required to read the header information of the encrypted drive, and which
stores the encryption keys.

PBKDF?2 is used in WPA-2 and TrueCrypt. Its main focus is to produced a hashed version of
a password and includes a salt value to reduce the opportunity for a rainbow table attack. It
generally uses over 1,000 iterations in order to slow down the creation of the hash, so that it
can overcome brute force attacks. The generalise format for PBKDF2 is:

DK = PBKDF2(Password, Salt, MInterations, dkLen)

where Password is the pass phrase, Salt is the salt, MInterations is the number of iterations,
and dklen is the length of the derived hash.
In WPA-2, the IEEE 802.111 standard defines that the pre-shared key is defined by:

PSK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256)
In TrueCrypt we use PBKDF2 to generate the key (with salt) and which will decrypt the
header, and reveal the keys which have been used to encrypt the disk (using AES, 3DES or
Twofish). We use:

byte[] result = passwordDerive.GenerateDerivedKey(16,
ASCIIEncoding. UTF8.GetBytes(message), salt, 1000);

which has a key length of 16 bytes (128 bits - dklen), uses a salt byte array, and 1000
iterations of the hash (Minterations). The resulting hash value will have 32 hexadecimal

characters (16 bytes).

Web link (PBKDF2): http://www.asecuritysite.com/encryption/PBKDF2

import hashlib;
import passlib.hash;
import sys;

salt="zDzPE45C"
string="password"

if (len(sys.argv)>1):
string=sys.argv[1]

if (len(sys.argv)>2):
salt=sys.argv[2]

print "PBKDF2 (SHA1):"+passlib.hash.pbkdf2_shal.encrypt(string, salt=salt)
print "PBKDF2 (SHA256):"+passlib.hash.pbkdf2_sha256.encrypt(string, salt=salt)

No Description Result

G.1 | Create a Python script to create the PBKDF2 | “changeme”:
hash for the following (uses a salt value of
“zpzPE45C”). You just need to list the first six | “123456”:
hex characters of the hashed value.

“password”

H Bcerypt

MDS5 and SHA-1 produce a hash signature, but this can be attacked by rainbow tables. Berypt
(Blowfish Crypt) is a more powerful hash generator for passwords and uses salt to create a non-
recurrent hash. It was designed by Niels Provos and David Mazicres, and is based on the
Blowfish cipher. It is used as the default password hashing method for BSD and other systems.

Overall it uses a 128-bit salt value, which requires 22 Base-64 characters. It can use a number
of iterations, which will slow down any brute-force cracking of the hashed value. For example,
“Hello” with a salt value of “$2a$06SNkYhORCM8pNWPaYvRLgN9.” gives:

$2a$06SNKYhORCM8pNWPaYvRLgN9.LbJw4genWCOQYIomOPOSUEZRQQjbfpy

As illustrated in Figure 1, the first part is "$2a$" (or "$2b$"), and then followed by the number
of rounds used. In this case is it 6 rounds which is 2”6 iterations (where each additional round
doubles the hash time). The 128-bit (22 character) salt values comes after this, and then finally
there is a 184-bit hash code (which is 31 characters).

The slowness of berypt is highlighted with an AWS EC2 server benchmark using hashcat:

e Hash type: MD5 Speed/sec: 380.02M words

e Hash type: SHA1 Speed/sec: 218.86M words

e Hash type: SHA256 Speed/sec: 110.37M words

e Hash type: berypt, Blowfish(OpenBSD) Speed/sec: 25.86k words
e Hash type: NTLM. Speed/sec: 370.22M words

You can see that Berypt is almost 15,000 times slower than MDS5 (380,000,000 words/sec
down to only 25,860 words/sec). With John The Ripper:

e mdScrypt [MDS5 32/64 X2] 318237 c/s real, 8881 c/s virtual
e berypt ("$2a$05", 32 iterations) 25488 c/s real, 708 c¢/s virtual
e LM [DES 128/128 SSE2-16] 88090K c¢/s real, 2462K c/s virtual

where you can see that BCrypt over 3,000 times slower than LM hashes. So, although the main
hashing methods are fast and efficient, this speed has a down side, in that they can be cracked
easier. With Berypt the speed of cracking is considerably slowed down, with each iteration
doubling the amount of time it takes to crack the hash with brute force. If we add one onto the
number of rounds, we double the time taken for the hashing process. So, to go from 6 to 16
increase by over 1,000 (2!°) and from 6 to 26 increases by over 1 million (22°).

The following defines a Python script which calculates a whole range of hashes:

import hashlib;
import passlib.hash;

salt="zDzPE45C"
string="password"
salt2="11111111111111113111111"

print "General Hashes"

print "MD5:"+hashlib.md5(string).hexdigest()

print "SHAl:"+hashlib.shal(string).hexdigest()
print "SHA256:"+hashlib.sha256(string) .hexdigest()
print "SHA512:"+hashlib.sha512(string) .hexdigest()

print "UNIX hashes (with salt)"

print "DES:"+passlib.hash.des_crypt.encrypt(string, salt=salt[:2])
print "MD5:"+passlib.hash.md5_crypt.encrypt(string, salt=salt)

print "Sun MD5:"+passlib.hash.sun_md5_crypt.encrypt(string, salt=salt)
print "SHAl:"+pass11b.hash.shal_crypt.encrypt(string, salt=salt)

print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)
print '"SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)
print "Bcrypt:"+passlib.hash.bcrypt.encrypt(string, salt=salt2[:22])

$2a$06SNKYhORCM8pNWPaYVvRLgN9.LbJw4gcnWCOQYIom0OPOSUEZRQQjbfpy

NkYhORCM8pNWPaYVRLgN9.

Salt (128 bits -22 chars)

LbJw4gcnWCOQYIom0OP0SUEZRQQjbfpy

Rounds (4-31)
Increasing by +1
doubles time to hash

Figure 1 Bcrypt

Hash (138 bits — 31 chars)

No Description Result
H.1 | Create the hash for the word “hello” for the MDS5:
different methods (you only have to give the | SHAT:
first six hex characters for the hash): SHA256:
SHAS512:
Also note the number hex characters that the | DES:
hashed value uses: MDS5:
Sun MD?5:
SHA-1:
SHA-256:
SHA-512:
I HMAC
Write a Python or Node.js program which will prove the following:
Type: HMAC-MD5
Message: Hello
Password: gwertyl23
Hex: c3a2fa8f20dee654a32c30e666cec48e
Baseb64: 7376b67daft1fdb475e7bae786b7d9cdf47baeba7le738f1le

If you get this to work, can you expand to include other MAC methods. You can test against
this page:

https://asecuritysite.com/encryption/js10

J

Reflective statements

1. Why might increasing the number of iterations be a better method of protecting
a hashed password than using a salted version?

10

2. Why might the methods berypt, Phpass and PBFDK2 be preferred for storing
passwords than MDS, SHA?

K What | should have learnt from this lab?

The key things learnt:

e The differing methods used to hash data.

e How hashcat and John The Ripper are used to crack hashed values.

e How saltis added to the hashing process.

e The core difference between the fast hashing methods (such as MD5 and SHA-1) and the
slow ones (bcrypt and PBKDE2).

L Additional

The following provides a hash most of the widely used hashing method. For this enter the
code of:

import hashlib;
import passlib.hash;
import sys;

salt="zDzPE45C"
string="password"
salt2="1111111111111111111111"

if (len(sys.argv)>1):
string=sys.argv[1]

if (len(s %/s .argv)>2):
t=sys.argv[2]

print "General Hashes"

print "MD5:"+hashlib.md5(string).hexdigest()
print "SHAl:"+hashlib.shal(string).hexdigest()
print "SHA256:"+hashlib.sha256(string) .hexdigest()
print "SHA512:"+hashlib.sha512(string) .hexdigest()

print "UNIX hashes (with salt)"

print "DES:"+passlib.hash.des_crypt.encrypt(string, salt=salt[:2])
print "MD5:"+pass11b hash.md5_crypt.encrypt(string, salt=salt)

print "Sun MD5: "+passTib.hash.sun_md5_crypt.encrypt(string, salt=salt)
print "SHAL: +pass11b hash.shal_crypt.encrypt(string, salt=salt)
print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)
print "SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)

11

print "APRl "+pass11b hash.apr_md5_crypt.encrypt(string, sa1t salt)

print "PHPASS:"+passlib.hash.phpass.encrypt(string, sa t=sal t)

print "PBKDF2 (SHAD) : " pass11b hash. Ebkde shal.encrypt(string, salt=salt)
print "PBKDF2 (SHA256): +pass11b hash.pbkdf2_sha256.encrypt(string, salt=salt)
#print "PBKDF2 (SHA512):"+passlib.hash. Bbkde sha512.encrypt(string, salt=salt)
#print "CTA PBKDF2:"+passlib.hash.cta_pbkdf2_shal.encrypt(string, salt=salt)
#print "DLITZ PBKDF2:"+passlib.hash.dlitz_pbkdf2_shal.encrypt(string, salt=salt)

print "MS windows Hashes"

print "LM Hash:"+passlib.hash.lTmhash.encrypt(string)

print "NT Hash:"+passlib.hash.nthash.encrypt(string)

print "MS DCC:"+passlib.hash.msdcc.encrypt(string, salt)
print "MS DCC2:"+passlib.hash.msdcc2.encrypt(string, salt)

#print "LDAP Hashes"

#print "LDAP (MD5):"+passlib.hash.ldap_md5.encrypt(string)

#print "LDAP (MD5 Salted):"+passlib.hash.ldap_salted_md5.encrypt(string, salt=salt)
#print "LDAP (SHA):"+passlib.hash.ldap_shal.encrypt(string)

#pqint ;L?AP (SHA1 salted):"+passlib.hash.Tdap_salted_shal.encrypt(string,
salt=salt

#print "LDAP (DES Crypt): "+pass11b hash.ldap_des_crypt.encrypt(string)
#print "LDAP (BSDI Crypt) "+passlib.hash.ldap_bsdi_crypt. encrypt(str1ng)
#print "LDAP (MD5 Cr pt "+passTib.hash.ldap_md5_crypt.encrypt(string)
#print "LDAP (Bcrypt% +pass11b hash.ldap_bcrypt.encrypt(string)

#print "LDAP (SHAL): "+pass11b hash.ldap_shal_crypt.encrypt(string)

#print "LDAP (SHA256):"+passlib.hash.ldap_sha256_crypt.encrypt(string)
#print "LDAP (SHA512):"+passlib.hash.ldap_sha512_crypt.encrypt(string)

print "LDAP (Hex MD5): +pass11b hash.ldap_hex_md5.encrypt(string)

print "LDAP (Hex SHAl) "+passTlib.hash.ldap_hex_shal. encrypt(str1ng)

print "LDAP (At Lass):"+passlib.hash.atlassian_pbkdf2_shal.encrypt(string)
print "LDAP (FSHP):"+passlib.hash.fshp.encrypt(string)

print "Database Hashes"

print "MS sQL 2000:"+passlib.hash.mssq12000.encrypt(string)

print "MS sQL 2000:"+passlib.hash.mssq12005.encrypt(string)

print "MS SQL 2000:"+Bass11b hash.mysql1323.encrypt(string)

print "MysQL:"+passlib.hash.mysql41l.encrypt(string)

print "Postgres (MD5):"+passlib.hash.postgres_md5.encrypt(string, user=salt)
print "oracle 10:"+passlib.hash.oraclel0.encrypt(string, user=salt)

print "oracle 11:"+passlib.hash.oraclell.encrypt(string)

print "other Known Hashes"

print "Cisco PIX:"+passlib.hash.cisco_pix.encrypt(string, user=salt)

print "Cisco Type 7:"+pass11b.hash.cisco_type7.encrypt(string)

print "Dyango DES:"+passlib.hash.django_des_crypt.encrypt(string, salt=salt)
print ''Dyango MD5: +pass11b hash.django_salted_md5.encrypt(string, salt=salt[:2])
print '"Dyango SHAl:' +pass11b hash.django_salted_shal.encrypt(string, salt=salt)
print "Dyango Bcrypt:"+passlib.hash.django_bcrypt.encrypt(string, salt=salt2[:22])
pr%nt "?yﬁngo PBKDF2 SHAL:'"+passlib.hash.django_pbkdf2_shal.encrypt(string,
salt=salt

pr%nt "?yﬁngo PBKDF2 SHAL:'"+passlib.hash.django_pbkdf2_sha256.encrypt(string,
salt=salt

print "Bcrypt:"+passlib.hash.bcrypt.encrypt(string, salt=salt2[:22])

No Description Result
L.1 | Inthe code, what does the modifier of
“[:22]1” do?

In running the methods, which of them take
the longest time to compute?

Of the methods used, outline how you would
identify some of the methods. For APR1 has
an identifier of $aprl$.

12

For the following identify the hash methods used:

e 5f4dcc3b5aa765d61d8327deb882cf99

o 5e884898da28047151d0e5618dc6292773603d0d6aabbdd62allef721d1542d8

e $aprl$zbzPE45C$y372GZYChB1wYtOokbm4/u.

o PHZDzPE45Ch4tv0oeT9mhtu3i2G/JybR1l

e b109f3bbbc244eb82441917ed06d618b9008dd09b3befdlb5e07394c706a8bb980b1d7785e597
6ec049b46df5f1326af5a2ea6d103fd07c95385ffab0cacbhc86

e 1zDzPE45C$EEQHIACXI6YINV3FnskmFl

e $2a$12$111111111111111111111uAQxS9VINRtBb6ZeFDV6K7tyBODZIFOa

L.2 It is known that a user has used a password of “passXord”, where X is an unknown
character or number. Can crack the following hashes based on a filter:

5fa8051ada600a097bd0922d7a085b94734684c4e070b24a02cf43d24d6eedbe
a6f63a5fb10b3bbal80a79f2fc565b1db2101040ce71ea80692d671857fe2117

Passwords used:

Number of tests:

L.3 Download the bfield.hash password hash, and using the rockyou.txt list, determine the
first 10 passwords in the hashed file. An example command might be:

hashcat -m 0 bfield.hash /usr/share/wordlists/rockyou.txt

First 10 passwords from bfield.hash:

13

