
1

Lab 5: Key Exchange
Objective: Key exchange allows us to pass a shared secret key between Bob and Alice. The
main methods for doing this are either encrypting with the public key, the Diffie Hellman
Method and the Elliptic Curve Diffie Hellman (ECDH) method. This lab investigates these
methods.

& Web link (Weekly activities): https://asecuritysite.com/esecurity/unit05
& Web link (Demo): https://youtu.be/Lnw4FhiOwiU

A Diffie-Hellman
No Description Result
A.1 Bob and Alice have agreed on the values:

g=2879, N= 9929
Bob Select x=6, Alice selects y=9

Now calculate (using a calculator):

Bob’s A value (gx mod N):

Alice’s B value (gY mod N):

A.2 Now they exchange the values. Next calculate the
shared key:

Bob’s value (Bx mod N):

Alice’s value (AY mod N):

Do they match? [Yes] [No]

A.3 If you are in the lab, select someone to share a value
with. Next agree on two numbers (g and N).

You should generate a random number, and so should
they. Do not tell them what your random number is.
Next calculate your A value, and get them to do the
same.

Next exchange values.

Numbers for g and N:

Your x value:

Your A value:

The B value you received:

Shared key:

Do they match: [Yes] [No]

B OpenSSL (Diffie-Hellman and ECC)
No Description Result
B.1 Generate 768-bit Diffie-Hellman

parameters:

What is the value of g:

2

openssl dhparam -out dhparams.pem
768 -text

View your key with:

cat dhparams.pem

How many bits does the prime number have?

How long does it take to produce the
parameters for 1,024 bits (Group 2)?

How long does it take to produce the
parameters for 1536 bits (Group 5)?

How would we change the g value?

No Description Result
B.2 Let’s look at the Elliptic curves we can

create:

openssl ecparam -list_curves

We can create our elliptic parameter file
with:

openssl ecparam -name
secp256k1 -out secp256k1.pem

Now view the details with:

openssl ecparam -in
secp256k1.pem -text -param_enc
explicit -noout

What are the details of the key?

Now we can create our key pair:

openssl ecparam -in
secp256k1.pem -genkey -noout -
out mykey.pem

Name three 160-bit curves:

By doing a search on the Internet, which
curve does Bitcoin use?

Can you find other application around that use
this curve or others?

Can you explain how you would use these EC
parameters to perform the ECDH key
exchange?

3

C Discrete Logarithms
C.1 ElGamal and Diffie Hellman use discrete logarithms. This involves a generator value

(g) and a prime number. A basic operation is gx (mod p). If p=11, and g=2, determine
the results (the first two have already been completed):

x g=2, p=11

gx (mod p)
1 2
2 4
3
4
5
6
7
8
9
10
11
12

Note: In Python you can implement this as:

g=2
p=11
x=3
print g**x % p

What happens to the values once we go past 10?

What happens to this sequence if we use g=3?

C.2 We can determine the values of g which will work for a given prime number with the

following:

import sys
import random

p=11

def getG(p):

 for x in range (1,p):
 rand = x
 exp=1
 next = rand % p

4

 while (next <> 1):
 next = (next*rand) % p
 exp = exp+1

 if (exp==p-1):
 print rand

print getG(p)

Run the program and determine the possible g values for these prime numbers:

p=11:

p=41:

On the Internet, find a large prime number, and determine the values of g that are possible:

C.3 We can write a Python program to implement this key exchange. Enter and run the

following program:

import random
import base64
import hashlib
import sys

g=9
p=997

a=random.randint(5, 10)

b=random.randint(10,20)

A = (g**a) % p
B = (g**b) % p

print 'g: ',g,' (a shared value), n: ',p, ' (a prime number)'

print '\nAlice calculates:'
print 'a (Alice random): ',a
print 'Alice value (A): ',A,' (g^a) mod p'

print '\nBob calculates:'
print 'b (Bob random): ',b
print 'Bob value (B): ',B,' (g^b) mod p'

print '\nAlice calculates:'
keyA=(B**a) % p
print 'Key: ',keyA,' (B^a) mod p'
print 'Key: ',hashlib.sha256(str(keyA)).hexdigest()

print '\nBob calculates:'
keyB=(A**b) % p
print 'Key: ',keyB,' (A^b) mod p'
print 'Key: ',hashlib.sha256(str(keyB)).hexdigest()

5

Pick three different values for g and p, and make sure that the Diffie Hellman key exchange
works.

g = p=

g= p=

g= p=

Can you pick a value of g and p which will not work?

The following program sets up a man-in-the-middle attack for Eve:

import random
import base64
import hashlib
import sys

g=15
p=1011

a= 5
b = 9
eve = 7

message=21

A=(g**a) % p

B=(g**b) % p

Eve1 = (A**eve) % p
Eve2 = (B**eve) % p

Key1= (Eve1**a) % p
Key2= (Eve2**b) % p

print 'g: ',g,' (a shared value), n: ',p, ' (a prime number)'

print '\n== Random value generation ==='

print '\nAlice calculates:'
print 'a (Alice random): ',a
print 'Alice value (A): ',A,' (g^a) mod p'

print '\nBob calculates:'
print 'b (Bob random): ',b
print 'Bob value (B): ',B,' (g^b) mod p'

print '\n==Alice sends value to Eve ==='

print 'Eve takes Alice\'s value and calculates: ',Eve1
print 'Alice gets Eve\'s value and calculates key of: ',Key1

6

print '\n==Bob sends value to Eve ==='

print 'Eve takes Bob\'s value and calculates: ',Eve2
print 'Bob gets Eve\'s value and calculates key of: ',Key2

D Elliptic Curve Diffie-Hellman (ECDH)
ECDH is now one of the most used key exchange methods, and uses the Diffie Hellman
method, but adds in elliptic curve methods. With this Alice generates (a) and Bob generates
(b). We select a point on a curve (G), and Alice generates aG, and Bob generates bG. They
pass the values to each other, and then Alice received bG, and Bob receives aG. Alice multiplies
by a, to get abG, and Bob will multiply by b, and also get abG. This will be their shared key.

D.1 Copy and paste the code from (you may have to run “pip install eccsnacks”):

& Web link (ECDH): https://asecuritysite.com/encryption/curve

and confirm that Bob and Alice will always get the same shared key.

from os import urandom
from eccsnacks.curve25519 import scalarmult, scalarmult_base
import binascii

a = urandom(32)
a_pub = scalarmult_base(a)

b = urandom(32)
b_pub = scalarmult_base(b)

k_ab = scalarmult(a, b_pub)
k_ba = scalarmult(b, a_pub)

print "Bob public: ",binascii.hexlify(b_pub)
print "Alice public: ",binascii.hexlify(a_pub)
print "Bob shared: ",binascii.hexlify(k_ba)
print "Alice shared: ",binascii.hexlify(k_ab)

Do Bob and Alice end up with the same key?

How large are the random numbers that Bob and Alice generate?

Do you think that this program will be secure? How might Eve discover the shared secret?

Estimate the time it would take her to discover the key if she can try one billion keys per
second:

How would you modify that program so that it was more secure?

7

E Simple Key Distribution Centre (KDC)
Rather than using key exchange, we can setup a KDC, and where Bob and Alice can have long-
term keys. These can be used to generate a session key for them to use. Enter the following
Python program, and prove its operation:

import hashlib
import sys
import binascii
import Padding
import random

from Crypto.Cipher import AES
from Crypto import Random

msg="test"

def encrypt(word,key, mode):
 plaintext=pad(word)
 encobj = AES.new(key,mode)
 return(encobj.encrypt(plaintext))

def decrypt(ciphertext,key, mode):
 encobj = AES.new(key,mode)
 rtn = encobj.decrypt(ciphertext)
 return(rtn)

def pad(s):
 extra = len(s) % 16
 if extra > 0:
 s = s + (' ' * (16 - extra))
 return s

rnd = random.randint(1,2**128)

keyA= hashlib.md5(str(rnd)).digest()

rnd = random.randint(1,2**128)

keyB= hashlib.md5(str(rnd)).digest()

print 'Long-term Key Alice=',binascii.hexlify(keyA)
print 'Long-term Key Bob=',binascii.hexlify(keyB)

rnd = random.randint(1,2**128)
keySession= hashlib.md5(str(rnd)).hexdigest()

ya = encrypt(keySession,keyA,AES.MODE_ECB)
yb = encrypt(keySession,keyB,AES.MODE_ECB)

print "Encrypted key sent to Alice:",binascii.hexlify(ya)
print "Encrypted key sent to Bob:",binascii.hexlify(yb)

decipherA = decrypt(ya,keyA,AES.MODE_ECB)
decipherB = decrypt(yb,keyB,AES.MODE_ECB)

print "Session key:",decipherA
print "Session key:",decipherB

& Web link (Simple KDC): https://asecuritysite.com/encryption/kdc01

8

The program above uses a shared 128-bit session key (generated by MD5). Now change the
program so that you generate a 256-bit session key. What are the changes made:

F Challenge
F.1 Bob and Alice agree on a g value of 5, and a prime number of 97. They then use the

Diffie-Hellman key exchange method. Alice passes a value of 32, and Bob passes a value
of 41. Can you determine the secret value that Bob and Alice have generated, and the
resultant key value? Outline the code here:

What happens if we use a g value of 2? Why is there a problem?

Can you now write a generate DH key cracker for any value of g, p, A (passed by Alice), and
B (passed by Bob) Outline code and run to evaluate the perform of our code with different
ranges of the prime number (p):

G What I should have learnt from this lab?
The key things learnt:

9

• The basics of the Diffie Hellman method.
• The basic method used with ECDH.

